RL Circuit: Application (1)

Each branch in the circuit shown contains a 3A fuse. The switch is closed at time t = 0.

- (a) Which fuse is blown in the shortest time?
- (b) Which fuse lasts the longest time?

RL Circuit: Application (8)

In the circuit shown the switch has been open for a long time. Find the currents I_1 and I_2

- just after the switch has been closed,
- a long time later,
- as functions of time for $0 < t < \infty$.

RL Circuit: Application (5)

Each RL circuit contains a 2A fuse. The switches are closed at t = 0.

• In what sequence are the fuses blown?

In the RL circuit shown the switch has been at position a for a long time and is thrown to position b at time t = 0. At that instant the current has the value $I_0 = 0.7$ A and decreases at the rate dI/dt = -360A/s.

- (a) Find the EMF ${\cal E}$ of the battery.
- (b) Find the resistance R of the resistor.
- (c) At what time t_1 has the current decreased to the value $I_1 = 0.2$ A?
- (d) Find the voltage across the inductor at time t_1 .

RL Circuit: Application (3)

The switch is closed at t = 0. Find the current I

- (a) immediately after the switch has been closed,
- (b) immediately before the fuse breaks,
- (c) immediately after the fuse has broken,
- (d) a very long time later.

RL Circuit: Application (7)

In the circuit shown the switch S is closed at time t = 0.

- (a) Find the current *I* as a function of time for $0 < t < t_F$, where t_F marks the instant the fuse breaks.
- (b) Find the current I as a function of time for $t > t_F$.

RL Circuit: Application (4)

Find the magnitude (in amps) and the direction (\uparrow,\downarrow) of the current *I*

- (a) right after the switch has been closed,
- (b) a very long time later.

RL Circuit: Application (2)

The switch in each RL circuit is closed at t = 0. Rank the circuits according to three criteria:

- (a) magnitude of current at t = 1 ms,
- (b) magnitude of current at $t = \infty$,
- (c) time it takes I to reach 63% of its ultimate value.

