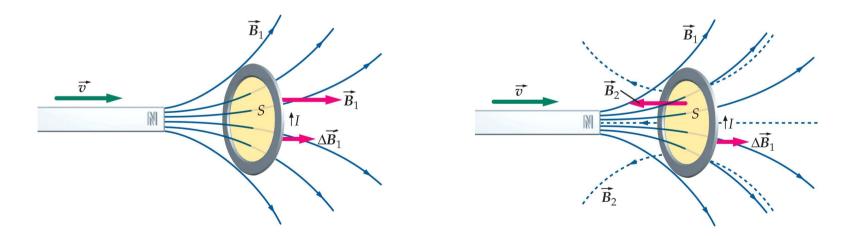
Lenz's Rule (1)

The induced emf and induced current are in such a direction as to oppose the cause that produces them.


- Lenz's rule is a statement of negative feedback.
- The cause is a change in magnetic flux through some loop.
- The loop can be real or fictitious.
- What opposes the cause is a magnetic field generated by the induced emf.
 - If the loop is a conductor the opposing magnetic field is generated by the induced current as stated in the law of Biot and Savart or in the restricted version of Ampère's law.
 - If the loop is not a conductor the opposing magnetic field is generated by the induced electric field as stated by the extended version of Ampère's law (to be discussed later).

Lenz's Rule (2)

In the situation shown below the current induced in the conducting ring generates a magnetic field whose flux counteracts the change in magnetic flux caused by the bar magnet.

- Moving the bar magnet closer to the ring increases the magnetic field \vec{B}_1 (solid field lines) through the ring by the amount $\Delta \vec{B}_1$.
- The resultant change in magnetic flux through the ring induces a current *I* in the direction shown.
- The induced current *I*, in turn, generates a magnetic field \vec{B}_2 (dashed field lines) in a direction that opposes the change of flux caused by the moving bar magnet.

