

Apply Ampère's law, $\oint \vec{B} \cdot d\vec{\ell} = \mu_0 I_C$, to the rectangular Amperian loop shown.

- Magnetic field inside: strong, uniform, directed along axis.
- Magnetic field outside: negligibly weak.
- Number of turns per unit length: *n*.
- Total current through Amperian loop: $I_C = nIa$ (*I* is the current in the wire).
- Ampère's law applied to rectangular loop: $Ba = \mu_0 n Ia$.
- Magnetic field inside: $B = \mu_0 n I$.

