

If the current I in (a) generates a magnetic field  $B_0 = 1T$  pointing out of the plane

- find magnitude and direction of the fields  $B_1, B_2, B_3$  generated by I in (b),
- find magnitude and direction of the fields  $B_4, B_5, B_6$  generated by I in (c).





A current-carrying wire is bent into two semi-infinite straight segments at right angles.

- (a) Find the direction  $(\odot, \bigotimes)$  of the magnetic fields  $B_1, \ldots, B_6$ .
- (b) Name the strongest and the weakest fields among them.
- (c) Name all pairs of fields that have equal strength.



## **Magnetic Field Application (2)**



The currents  $I_1, I_2$  in two long straight wires have equal magnitude and generate a magnetic field  $\vec{B}$  as shown at three points in space.

• Find the directions  $(\odot, \bigotimes)$  for  $I_1, I_2$  in configurations (a) and (b).

