Magnetic Moment of a Rotating Disk

Consider a nonconducting disk of radius R with a uniform surface charge density σ . The disk rotates with angular velocity $\vec{\omega}$.

Calculation of the magnetic moment $\vec{\mu}$:

- Total charge on disk: $Q = \sigma(\pi R^2)$.
- Divide the disk into concentric rings of width dr.
- Period of rotation: $T = \frac{2\pi}{\omega}$.
- Current within ring: $dI = \frac{dQ}{T} = \sigma(2\pi r dr) \frac{\omega}{2\pi} = \sigma \omega r dr$.
- Magnetic moment of ring: $d\mu = dI(\pi r^2) = \pi \sigma \omega r^3 dr$.
- Magnetic moment of disk: $\mu = \int_0^R \pi \sigma \omega r^3 dr = \frac{\pi}{4} \sigma R^4 \omega$.
- Vector relation: $\vec{\mu} = \frac{\pi}{4} \sigma R^4 \vec{\omega} = \frac{1}{4} Q R^2 \vec{\omega}$.

