

Fancy solution:

- Uniform magnetic field \vec{B} points out of the plane.
- Magnetic force on segment ds: $dF = IBds = IBRd\theta$.
- Integrate $dF_x = dF \sin \theta$ and $dF_y = dF \cos \theta$ along semicircle.

•
$$F_x = IBR \int_0^{\pi} \sin \theta d\theta = 2IBR$$
, $F_y = IBR \int_0^{\pi} \cos \theta d\theta = 0$.

Clever solution:

- Replace the semicircle by symmetric staircase of tiny wire segments.
- Half the vertical segments experience a force to the left, the other half a force to the right. The resultant horizontal force is zero.
- All horizontal segments experience a downward force. The total length is 2R. The total downward force is 2IBR.
- Making the segments infinitesimally small does not change the result.

