Magnetic Force on Current-Carrying Conductor Consider drift of Na⁺ and Cl⁻ ions in a plastic pipe filled with salt water. - $v_{1x} > 0$, $v_{2x} < 0$: drift velocities; $q_1 > 0$, $q_2 < 0$: charge on ions - n_1, n_2 : number of charge carriers per unit volume - Electric current through A: $I = A(n_1q_1v_{1x} + n_2q_2v_{2x})$ - Force on Na⁺: $\vec{F}_1 = q_1 \vec{v}_1 \times \vec{B} \Rightarrow F_{1z} = q_1 v_{1x} B_y$ - Force on Cl $^-$: $\vec{F}_2 = q_2 \vec{v}_2 \times \vec{B} \implies F_{2z} = q_2 v_{2x} B_y$ - Force on current-carrying pipe: $F_z = (n_1q_1v_{1x} + n_2q_2v_{2x})ALB_y = ILB_y$ - Vector relation: $\vec{F} = I\vec{L} \times \vec{B}$