

This circuit has been running for a very long time.

- (a) Find the current through the 18V battery.
- (b) Find the total power dissipated in the resistors.
- (c) Find the charge stored on the capacitor.

RC Circuit: Application (2)

The switches are closed at t = 0. This begins the charging process in each RC circuit.

Name the circuit in which...

- (a) the charge flows into the capacitor at the highest rate initially,
- (b) the capacitor has the most charge ultimately,
- (c) the capacitor is 90% full in the shortest time.

RC Circuit: Application (3)

At time t = 0 the capacitor in this circuit is discharged.

Find the current I_1

(a) at t = 0,

(b) at $t = \infty$.

Find the current I_2

- (c) at t = 0,
- (d) at $t = \infty$.

RC Circuit: Application (4)

In this 3-loop RC circuit, the switch S is closed at time t = 0.

- (a) Find the currents I_1, I_2, I_3 just after the switch has been closed.
- (b) Find the currents I_1, I_2, I_3 a very long time later.

RC Circuit: Application (5)

In the RC circuit shown, the switch S has been open for a long time.

- (a) Find the currents I_1 and I_2 immediately after the switch has been closed.
- (b) Find the currents I_1 and I_2 a very long time later.

In the *RC* circuit shown, both switches are initially open and the capacitor is discharged.

- (a) Close switch S_1 and find the currents I_1 and I_2 immediately afterwards.
- (b) Find the currents I_1I_2 and the charge Q on the capacitor a very long time later.
- (c) Now close switch S_2 also and find the currents I_1 and I_2 immediately afterwards.
- (d) Find the currents I_1, I_2 and the charge Q on the capacitor a very long time later.

RC Circuit: Application (7)

In the RC circuit shown, the switch has been open for a long time.

Find the currents I_1, I_2, I_3 and the charge Q on the capacitor

- (a) right after the switch has been closed,
- (b) a very long time later.

The circuit shown is that of a flashing lamp, such as are attached to barrels at highway construction sites.

The power is supplied by a battery with $\mathcal{E} = 95V$. The fluorescent lamp *L* is connected in parallel to the capacitor with $C = 0.15 \mu F$ of an *RC* circuit.

Current passes through the lamp only when the potential difference across it reaches the breakdown voltage $V_L = 72V$. In this event, the capacitor discharges through the lamp, and the lamp flashes briefly.

Suppose that two flashes per second are needed. What should the resistance R be?

