Resistance and Resistivity

- **Resistor**: device (material object with two terminals)
- Resistance: attribute of device
- Resistivity: attribute of conducting material

A voltage V provided by some source is applied to the terminals of a resistor and a current I is observed flowing through the resistor.

• Resistance:
$$R = \frac{V}{I}$$
 [1 Ω =1V/A] (1 Ohm)

The current density \vec{J} in a resistor depends on the local electric field \vec{E} and on the resistivity ρ of the resistor material.

• Resistivity:
$$\rho = \frac{E}{J} \quad \left[\frac{1\text{V/m}}{1\text{A/m}^2} = 1\Omega\text{m}\right]$$

• Conductivity:
$$\sigma = \frac{1}{\rho}$$
 [1(Ω m)⁻¹]

• Vector relations: $\vec{E} = \rho \vec{J}, \quad \vec{J} = \sigma \vec{E}$