Current and Current Density

Consider drift of Na⁺ and Cl⁻ ions in a plastic pipe filled with salt water.

- $v_1 > 0$, $v_2 < 0$: drift velocities
- $q_1 > 0, q_2 < 0$: charge on ions
- n_1, n_2 : number of charge carriers per unit volume

- Net charge flowing through area A in time dt: $dQ = n_1q_1v_1Adt + n_2q_2v_2Adt$ [C]
- Electric current through area A: $I \equiv \frac{dQ}{dt} = A(n_1q_1v_1 + n_2q_2v_2)$ [A]
- Current density: $\vec{J} = n_1 q_1 \vec{v_1} + n_2 q_2 \vec{v_2}$ [A/m²]
- Current equals flux of current density: $I = \int \vec{J} \cdot d\vec{A}$