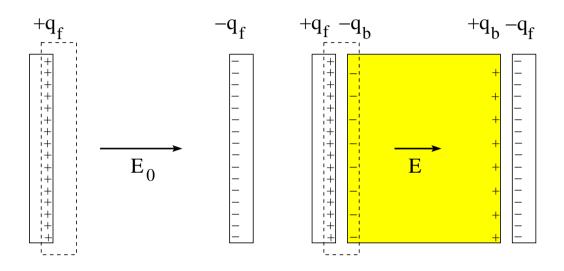

Parallel-Plate Capacitor with Dielectric (1)

The polarization produces a bound charge on the surface of the dielectric.

The bound surface charge has the effect of reducing the electric field between the plates from \vec{E}_0 to \vec{E} .


- *A*: area of plates
- *d*: separation between plates
- $\pm q_f$: free charge on plate

- $\pm q_b$: bound charge on surface of dielectric
- \vec{E}_0 : electric field in vacuum
- \vec{E} : electric field in dielectric

Parallel-Plate Capacitor with Dielectric (2)

Use Gauss' law to determine the electric fields \vec{E}_0 and \vec{E} .

- Field in vacuum: $E_0 A = \frac{q_f}{\epsilon_0} \quad \Rightarrow \quad E_0 = \frac{q_f}{\epsilon_0 A}$
- Field in dielectric: $EA = \frac{q_f q_b}{\epsilon_0} \quad \Rightarrow \quad E = \frac{q_f q_b}{\epsilon_0 A} < E_0$
- Voltage: $V_0 = E_0 d$ (vacuum), $V = E d = \frac{V_0}{\kappa} < V_0$ (dielectric)

Dielectric constant:
$$\kappa \equiv \frac{E_0}{E} = \frac{q_f}{q_f - q_b} > 1$$
. Permittivity of dielectric: $\epsilon = \kappa \epsilon_0$.