Electric Potential Energy of Two Point Charges

Consider two different perspectives:

- #1a Electric potential when q_1 is placed: $V(\vec{r}_2) \doteq V_2 = k \frac{q_1}{r_{12}}$ Electric potential energy when q_2 is placed into potential V_2 : $U = q_2 V_2 = k \frac{q_1 q_2}{r_1}$
- #1b Electric potential when q_2 is placed: $V(\vec{r}_1) \doteq V_1 = k \frac{q_2}{r_{12}}$ Electric potential energy when q_1 is placed into potential V_1 : $U = q_1 V_1 = k \frac{q_1 q_2}{r_{12}}$.
 - #2 Electric potential energy of q_1 and q_2 :

$$U = \frac{1}{2} \sum_{i=1}^{2} q_i V_i,$$

where
$$V_1 = k \frac{q_2}{r_{12}}$$
, $V_2 = k \frac{q_1}{r_{12}}$.

Electric Potential Energy of Three Point Charges

#1 Place q_1 , then q_2 , then q_3 , and add all changes in potential energy:

$$U = 0 + k \frac{q_1 q_2}{r_{12}} + k \left(\frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right) = k \left(\frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right).$$

#2 Symmetric expression of potential energy U in terms of the potentials V_i experienced by point charges q_1 :

$$U = \frac{1}{2} \sum_{i=1}^{3} q_i V_i = k \left(\frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right),$$

where

$$V_{1} = k \left(\frac{q_{2}}{r_{12}} + \frac{q_{3}}{r_{13}} \right),$$

$$V_{2} = k \left(\frac{q_{1}}{r_{12}} + \frac{q_{3}}{r_{23}} \right),$$

$$V_{3} = k \left(\frac{q_{1}}{r_{13}} + \frac{q_{2}}{r_{23}} \right).$$

