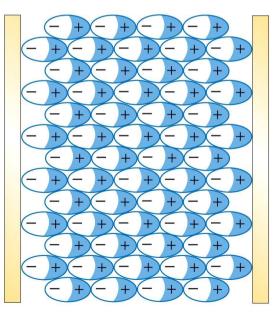
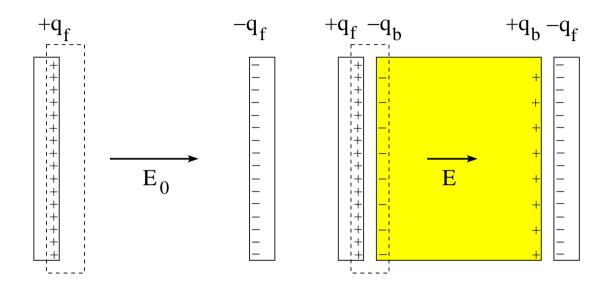

Capacitor with Dielectric



Most capacitors have a dielectric (insulating solid or liquid material) in the space between the conductors. This has several advantages:

- Physical separation of the conductors.
- Prevention of dielectric breakdown.
- Enhancement of capacitance.

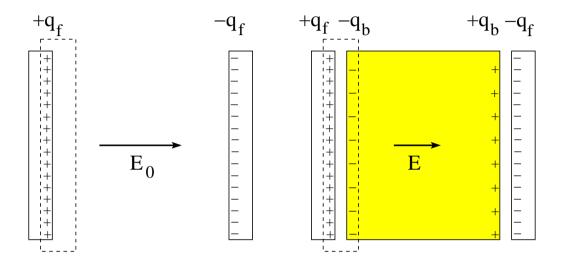
The dielectric is polarized by the electric field between the capacitor plates.



Parallel-Plate Capacitor with Dielectric (1)

The polarization produces a bound charge on the surface of the dielectric.

The bound surface charge has the effect of reducing the electric field between the plates from \vec{E}_0 to \vec{E} .


- A: area of plates
- *d*: separation between plates
- $\pm q_f$: free charge on plate

- $\pm q_b$: bound charge on surface of dielectric
- \vec{E}_0 : electric field in vacuum
- \vec{E} : electric field in dielectric

Parallel-Plate Capacitor with Dielectric (2)

Use Gauss' law to determine the electric fields \vec{E}_0 and \vec{E} .

• Field in vacuum: $E_0 A = \frac{q_f}{\epsilon_0} \Rightarrow E_0 = \frac{q_f}{\epsilon_0 A}$

• Field in dielectric: $EA = \frac{q_f - q_b}{\epsilon_0} \Rightarrow E = \frac{q_f - q_b}{\epsilon_0 A} < E_0$

• Voltage: $V_0 = E_0 d$ (vacuum), $V = E d = \frac{V_0}{\kappa} < V_0$ (dielectric)

Dielectric constant: $\kappa \equiv \frac{E_0}{E} = \frac{q_f}{q_f - q_b} > 1$. Permittivity of dielectric: $\epsilon = \kappa \epsilon_0$.

TABLE 24-1

Dielectric Constants and Dielectric Strengths of Various Materials

Material	Dielectric Constant κ	Dielectric Strength, kV/mm
Air	1.00059	3
Bakelite	4.9	24
Glass (Pyrex)	5.6	14
Mica	5.4	10-100
Neoprene	6.9	12
Paper	3.7	16
Paraffin	2.1–2.5	10
Plexiglas	3.4	40
Polystyrene	2.55	24
Porcelain	7	5.7
Transformer oil	2.24	12

- Dielectrics increase the capacitance: $C/C_0 = \kappa$.
- The capacitor is discharged spontaneously across the dielectric if the electric field exceeds the value quoted as dielectric strength.

What happens when a dielectric is placed into a capacitor with the **charge on the capacitor** kept constant?

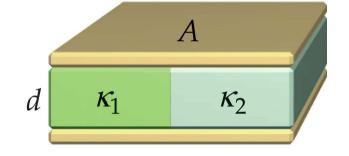
	vacuum	dielectric
charge	Q_0	$Q = Q_0$
electric field	E_0	$E = \frac{E_0}{\kappa} < E_0$
voltage	V_0	$V = \frac{V_0}{\kappa} < V_0$
capacitance	$C_0 = \frac{Q_0}{V_0}$	$C = \frac{Q}{V} = \kappa C_0 > C_0$
potential energy	$U_0 = \frac{Q_0^2}{2C_0}$	$U = \frac{Q^2}{2C} = \frac{U_0}{\kappa} < U_0$
energy density	$u_E^{(0)} = \frac{1}{2}\epsilon_0 E_0^2$	$u_E = \frac{u_E^{(0)}}{\kappa} = \frac{1}{2}\kappa\epsilon_0 E^2 < u_E^{(0)}$

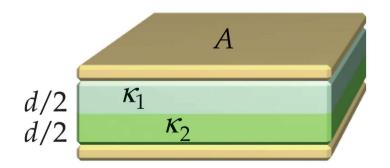
Impact of Dielectric (2)

What happens when a dielectric is placed into a capacitor with the voltage across the capacitor kept constant?

	vacuum	dielectric
charge	Q_0	$Q = \kappa Q_0$
electric field	E_0	$Q = \kappa Q_0$ $E = E_0$
voltage	V_0	$V = V_0$
capacitance	$C_0 = \frac{Q_0}{V_0}$	$C = \frac{Q}{V} = \kappa C_0 > C_0$
potential energy	$U_0 = \frac{1}{2}C_0 V_0^2$	$U = \frac{1}{2}CV^2 = \kappa U_0 > U_0$
energy density	$u_E^{(0)} = \frac{1}{2}\epsilon_0 E_0^2$	$u_E = \kappa u_E^{(0)} = \frac{1}{2} \kappa \epsilon_0 E^2 > u_E^{(0)}$

Stacked Dielectrics


Consider a parallel-plate capacitor with area A of each plate and spacing d.


- Capacitance without dielectric: $C_0 = \frac{\epsilon_0 A}{d}$.
- Dielectrics stacked in parallel: $C = C_1 + C_2$

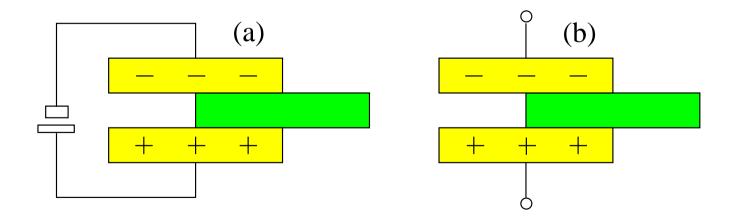
with
$$C_1 = \kappa_1 \epsilon_0 \frac{A/2}{d}, C_2 = \kappa_2 \epsilon_0 \frac{A/2}{d}.$$

 $\Rightarrow C = \frac{1}{2} (\kappa_1 + \kappa_2) C_0.$

• Dielectrics stacked in series: $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$

with
$$C_1 = \kappa_1 \epsilon_0 \frac{A}{d/2}, \ C_2 = \kappa_2 \epsilon_0 \frac{A}{d/2}$$

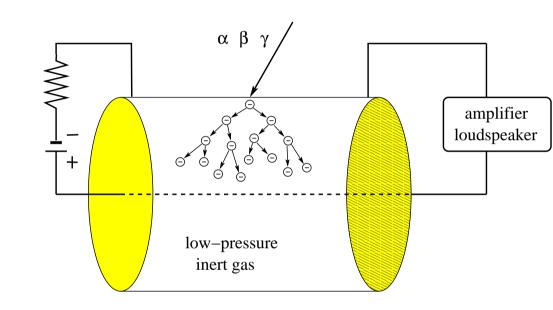
 $\Rightarrow C = \frac{2\kappa_1 \kappa_2}{\kappa_1 + \kappa_2} C_0.$



Consider two charged capacitors with dielectrics only halfway between the plates.

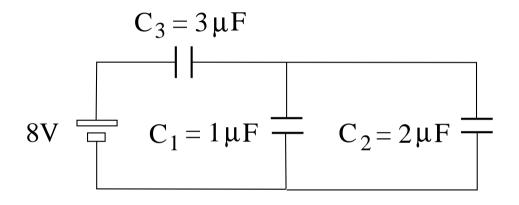
In configuration (a) any lateral motion of the dielectric takes place at **constant voltage** across the plates.

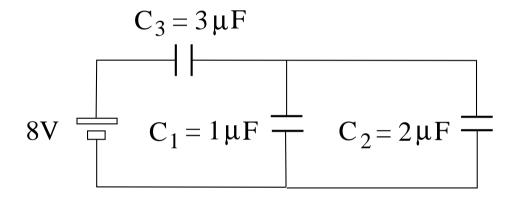
In configuration (b) any lateral motion of the dielectric takes place at **constant charge** on the plates.


Determine in each case the direction (left/zero/right) of the lateral force experienced by the dielectric.

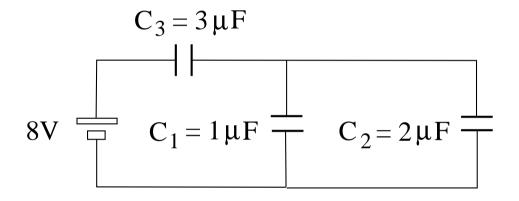
Radioactive atomic nuclei produce high-energy particles of three different kinds:

- α -particles are ⁴He nuclei.
- β-particles are electrons or positrons.
- γ -particles are high-energy photons.


- Free electrons produced by ionizing radiation are strongly accelerated toward the central wire.
- Collisions with gas atoms produce further free electrons, which are accelerated in the same direction.
- An avalanche of electrons reaching the wire produces a current pulse in the circuit.


Geiger Counter

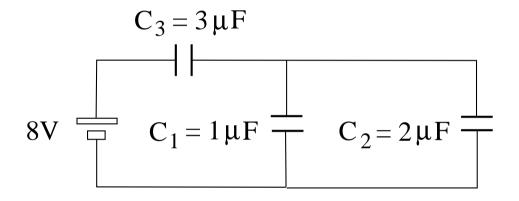
- (a) Find the equivalent capacitance C_{eq} .
- (b) Find the voltage V_3 across capacitor C_3 .
- (c) Find the charge Q_2 on capacitor C_2 .



- (a) Find the equivalent capacitance C_{eq} .
- (b) Find the voltage V_3 across capacitor C_3 .
- (c) Find the charge Q_2 on capacitor C_2 .

(a)
$$C_{12} = C_1 + C_2 = 3\mu F$$
, $C_{eq} = \left(\frac{1}{C_{12}} + \frac{1}{C_3}\right)^{-1} = 1.5\mu F$.

- (a) Find the equivalent capacitance C_{eq} .
- (b) Find the voltage V_3 across capacitor C_3 .
- (c) Find the charge Q_2 on capacitor C_2 .



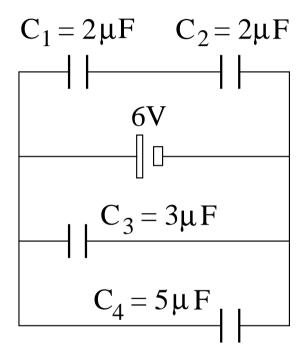
(a)
$$C_{12} = C_1 + C_2 = 3\mu F$$
, $C_{eq} = \left(\frac{1}{C_{12}} + \frac{1}{C_3}\right)^{-1} = 1.5\mu F$.

(b)
$$Q_3 = Q_{12} = Q_{eq} = C_{eq}(8V) = 12\mu C$$

 $\Rightarrow V_3 = \frac{Q_3}{C_3} = \frac{12\mu C}{3\mu F} = 4V.$

- (a) Find the equivalent capacitance C_{eq} .
- (b) Find the voltage V_3 across capacitor C_3 .
- (c) Find the charge Q_2 on capacitor C_2 .

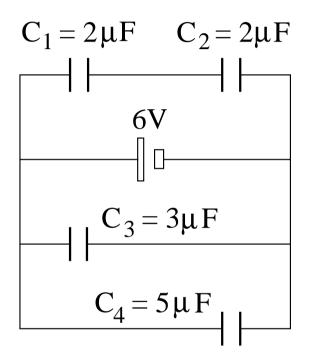
Solution:


(a)
$$C_{12} = C_1 + C_2 = 3\mu F$$
, $C_{eq} = \left(\frac{1}{C_{12}} + \frac{1}{C_3}\right)^{-1} = 1.5\mu F$.

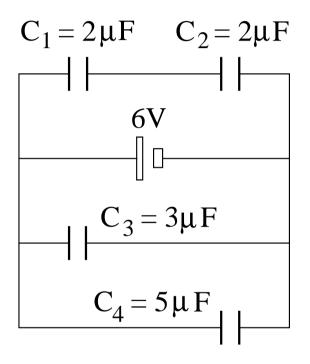
(b)
$$Q_3 = Q_{12} = Q_{eq} = C_{eq}(8V) = 12\mu C$$

 $\Rightarrow V_3 = \frac{Q_3}{C_3} = \frac{12\mu C}{3\mu F} = 4V.$

(c) $Q_2 = V_2 C_2 = 8\mu C.$


- (a) Find the energy U_3 stored on capacitor C_3 .
- (b) Find the voltage V_4 across capacitor C_4 .
- (c) Find the voltage V_2 across capacitor C_2 .
- (d) Find the charge Q_1 on capacitor C_1 .

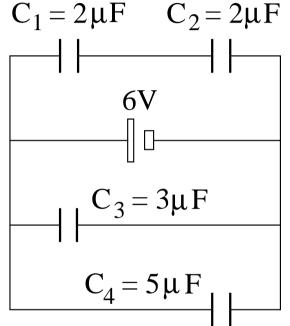
- (a) Find the energy U_3 stored on capacitor C_3 .
- (b) Find the voltage V_4 across capacitor C_4 .
- (c) Find the voltage V_2 across capacitor C_2 .
- (d) Find the charge Q_1 on capacitor C_1 .


(a)
$$U_3 = \frac{1}{2}(3\mu F)(6V)^2 = 54\mu J.$$

- (a) Find the energy U_3 stored on capacitor C_3 .
- (b) Find the voltage V_4 across capacitor C_4 .
- (c) Find the voltage V_2 across capacitor C_2 .
- (d) Find the charge Q_1 on capacitor C_1 .

(a)
$$U_3 = \frac{1}{2}(3\mu F)(6V)^2 = 54\mu J.$$

(b) $V_4 = 6V.$

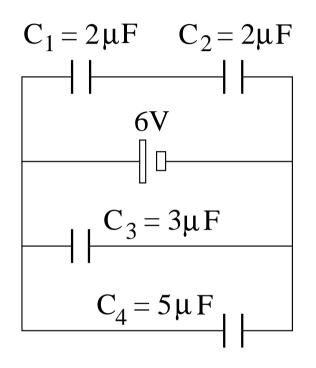

- (a) Find the energy U_3 stored on capacitor C_3 .
- Find the voltage V_4 across capacitor C_4 . (b)
- Find the voltage V_2 across capacitor C_2 . (C)
- (d) Find the charge Q_1 on capacitor C_1 .

Solution:

(a)
$$U_3 = \frac{1}{2}(3\mu F)(6V)^2 = 54\mu J.$$

(b)
$$V_4 = 6V$$
.

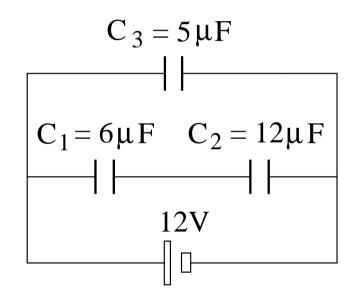
(c)
$$V_2 = \frac{1}{2}6V = 3V.$$

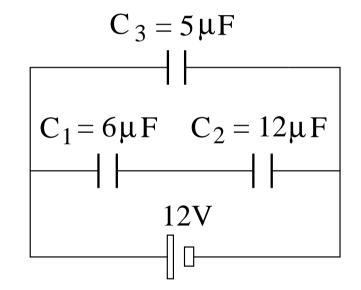

14/9/2015

[tsl362 - 11/13]

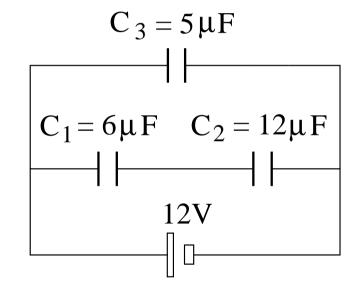
- (a) Find the energy U_3 stored on capacitor C_3 .
- (b) Find the voltage V_4 across capacitor C_4 .
- (c) Find the voltage V_2 across capacitor C_2 .
- (d) Find the charge Q_1 on capacitor C_1 .

(a)
$$U_3 = \frac{1}{2}(3\mu F)(6V)^2 = 54\mu J.$$


- (b) $V_4 = 6V$.
- (c) $V_2 = \frac{1}{2}6V = 3V.$
- (d) $Q_1 = (2\mu F)(3V) = 6\mu C.$

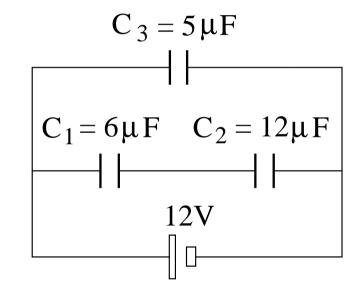

- (a) Find the charge Q_1 on capacitor 1 and the charge Q_2 on capacitor 2.
- (b) Find the voltage V_1 across capacitor 1 and the voltage V_2 across capacitor 2.
- (c) Find the charge Q_3 and the energy U_3 on capacitor 3.

- (a) Find the charge Q_1 on capacitor 1 and the charge Q_2 on capacitor 2.
- (b) Find the voltage V_1 across capacitor 1 and the voltage V_2 across capacitor 2.
- (c) Find the charge Q_3 and the energy U_3 on capacitor 3.


(a)
$$C_{12} = \left(\frac{1}{6\mu F} + \frac{1}{12\mu F}\right)^{-1} = 4\mu F,$$

 $Q_1 = Q_2 = Q_{12} = (4\mu F)(12V) = 48\mu C.$

- (a) Find the charge Q_1 on capacitor 1 and the charge Q_2 on capacitor 2.
- (b) Find the voltage V_1 across capacitor 1 and the voltage V_2 across capacitor 2.
- (c) Find the charge Q_3 and the energy U_3 on capacitor 3.

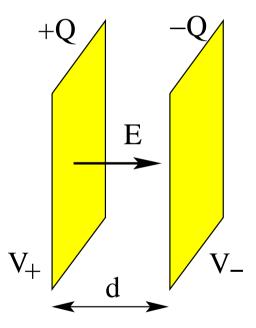

(a)
$$C_{12} = \left(\frac{1}{6\mu F} + \frac{1}{12\mu F}\right)^{-1} = 4\mu F,$$

 $Q_1 = Q_2 = Q_{12} = (4\mu F)(12V) = 48\mu C.$
(b) $V_1 = \frac{Q_1}{C_1} = \frac{48\mu C}{6\mu F} = 8V,$
 $V_2 = \frac{Q_2}{C_2} = \frac{48\mu C}{12\mu F} = 4V.$

- (a) Find the charge Q_1 on capacitor 1 and the charge Q_2 on capacitor 2.
- (b) Find the voltage V_1 across capacitor 1 and the voltage V_2 across capacitor 2.
- (c) Find the charge Q_3 and the energy U_3 on capacitor 3.

(a)
$$C_{12} = \left(\frac{1}{6\mu F} + \frac{1}{12\mu F}\right)^{-1} = 4\mu F,$$

 $Q_1 = Q_2 = Q_{12} = (4\mu F)(12V) = 48\mu C$
(b) $V_1 = \frac{Q_1}{C_1} = \frac{48\mu C}{6\mu F} = 8V,$
 $V_2 = \frac{Q_2}{C_2} = \frac{48\mu C}{12\mu F} = 4V.$
(c) $Q_3 = (5\mu F)(12V) = 60\mu C,$
 $U_3 = \frac{1}{2}(5\mu F)(12V)^2 = 360\mu J.$


d = 1mm and a potential difference $V = V_{+} - V_{-} = 3$ V between them.

(a) Find the magnitude E of the electric field between the plates.

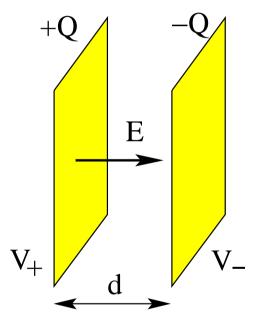
(b) Find the amount Q of charge on each plate.

(c) Find the energy U stored on the capacitor.

(d) Find the area A of each plate.

d = 1mm and a potential difference $V = V_{+} - V_{-} = 3$ V between them.

(a) Find the magnitude E of the electric field between the plates.


(b) Find the amount Q of charge on each plate.

(c) Find the energy U stored on the capacitor.

(d) Find the area A of each plate.

(a)
$$E = \frac{V}{d} = \frac{3V}{1mm} = 3000 V/m.$$

d = 1mm and a potential difference $V = V_{+} - V_{-} = 3$ V between them.

(a) Find the magnitude E of the electric field between the plates.

(b) Find the amount Q of charge on each plate.

(c) Find the energy U stored on the capacitor.

(d) Find the area A of each plate.

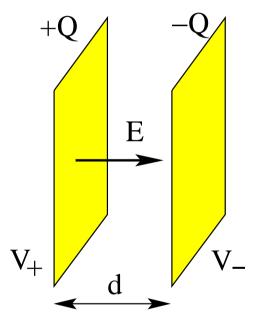
V_+ d V_-

(a)
$$E = \frac{V}{d} = \frac{3V}{1mm} = 3000V/m.$$

(b) $Q = CV = (6pF)(3V) = 18pC.$

d = 1mm and a potential difference $V = V_{+} - V_{-} = 3$ V between them.

(a) Find the magnitude E of the electric field between the plates.


(b) Find the amount Q of charge on each plate.

(c) Find the energy U stored on the capacitor.

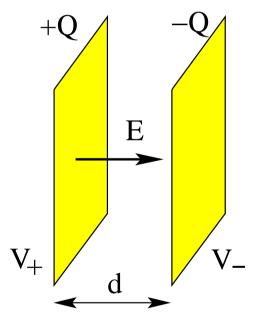
(d) Find the area A of each plate.

(a)
$$E = \frac{V}{d} = \frac{3V}{1mm} = 3000V/m.$$

(b) $Q = CV = (6pF)(3V) = 18pC.$
(c) $U = \frac{1}{2}QV = 0.5(18pC)(3V) = 27pJ$

d = 1mm and a potential difference $V = V_{+} - V_{-} = 3$ V between them.

(a) Find the magnitude E of the electric field between the plates.


(b) Find the amount Q of charge on each plate.

(c) Find the energy U stored on the capacitor.

(d) Find the area A of each plate.

(a)
$$E = \frac{V}{d} = \frac{3V}{1\text{mm}} = 3000\text{V/m}.$$

(b) $Q = CV = (6\text{pF})(3\text{V}) = 18\text{pC}.$
(c) $U = \frac{1}{2}QV = 0.5(18\text{pC})(3\text{V}) = 27\text{pJ}.$
(d) $A = \frac{Cd}{\epsilon_0} = \frac{(6\text{pF})(1\text{mm})}{8.85 \times 10^{-12}\text{C}^2\text{N}^{-1}\text{m}^{-2}} = 6.78 \times 10^{-4}\text{m}^2.$

