
Work and Energy

Consider a block of mass m moving along the x-axis.

- Conservative force acting on block: F = F(x)
- Work done by F(x) on block: $W_{if} = \int_{x_i}^{x_f} F(x) dx$
- Kinetic energy of block: $K = \frac{1}{2}mv^2$
- Potential energy of block: $U(x) = -\int_{x_0}^x F(x)dx \Rightarrow F(x) = -\frac{dU}{dx}$
- Transformation of energy: $\Delta K \equiv K_f K_i, \ \Delta U \equiv U_f U_i$
- Total mechanical energy: $E = K + U = \text{const} \Rightarrow \Delta K + \Delta U = 0$
- Work-energy relation: $W_{if} = \Delta K = -\Delta U$

Conservative Forces in Mechanics

Conservative forces familiar from mechanics:

- Elastic force: $F(x) = -kx \Rightarrow U(x) = -\int_{x_0}^x (-kx)dx = \frac{1}{2}kx^2 \qquad (x_0 = 0).$
- Gravitational force (locally): F(y) = -mg

$$\Rightarrow U(y) = -\int_{y_0}^y (-mg)dy = mgy \qquad (y_0 = 0).$$

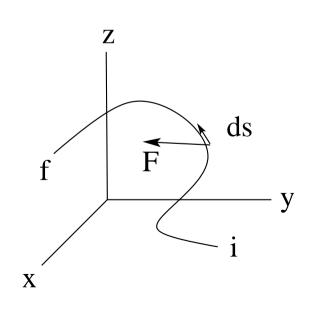
• Gravitational force (globally): $F(r) = -G \frac{mm_E}{r^2}$

$$\Rightarrow U(r) = -\int_{r_0}^r \left(-G\frac{mm_E}{r^2}\right) dr = -G\frac{mm_E}{r} \qquad (r_0 = \infty).$$

Potential energy depends on integration constant.

Integration constant determines reference position where U = 0: $x = x_0, y = y_0, r = r_0$.

Consider a particle acted on by a force \vec{F} as it moves along a specific path in 3D space.

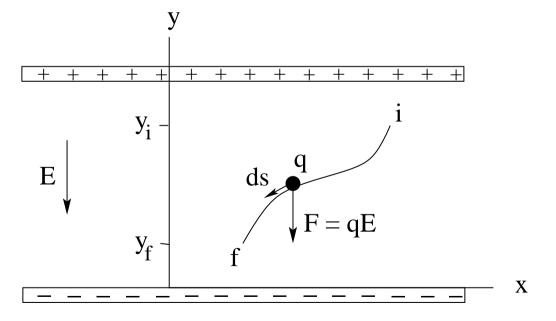

• Force: $\vec{F} = F_x \hat{i} + F_y \hat{j} + F_z \hat{k}$

• Displacement:
$$d\vec{s} = dx\hat{i} + dy\hat{j} + dz\hat{k}$$

• Work:
$$W_{if} = \int_{\vec{r}_i}^{\vec{r}_f} \vec{F} \cdot d\vec{s} = \int_{x_i}^{x_f} F_x dx + \int_{y_i}^{y_f} F_y dy + \int_{z_i}^{z_f} F_z dz$$

• Potential energy:
$$U(\vec{r}) = -\int_{\vec{r}_0}^{\vec{r}} \vec{F} \cdot d\vec{s} = -\int_{x_0}^{x} F_x dx - \int_{y_0}^{y} F_y dy - \int_{z_0}^{z} F_z dz$$

Note: The work done by a conservative force is path-independent.

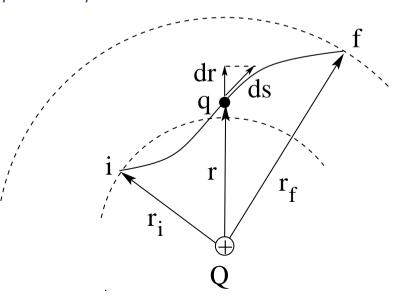


Potential Energy of Charged Particle in Uniform Electric Field

- Electrostatic force: $\vec{F} = -qE\hat{j}$ (conservative)
- Displacement: $d\vec{s} = dx\hat{i} + dy\hat{j}$

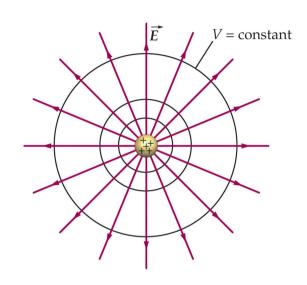
• Work:
$$W_{if} = \int_{i}^{f} \vec{F} \cdot d\vec{s} = \int_{y_i}^{y_f} (-qE) dy = -qE(y_f - y_i)$$

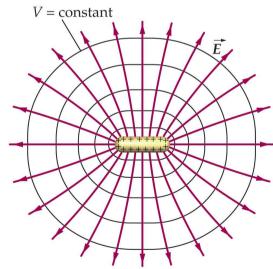
- Potential energy: $U = -\int_0^y (-qE)dy = qEy$
- Electric potential: V(y) = Ey



Potential Energy of Charged Particle in Coulomb Field

- Electrostatic force: $\vec{F} = \frac{kqQ}{r^2}\hat{r}$ (conservative)
- Displacement: $d\vec{s} = d\vec{r} + d\vec{s}_{\perp}$, $d\vec{r} = dr\hat{r}$
- Work: $W_{if} = \int_{i}^{f} \vec{F} \cdot d\vec{s} = kqQ \int_{i}^{f} \frac{\hat{r} \cdot d\vec{s}}{r^{2}} = kqQ \int_{r_{i}}^{r_{f}} \frac{dr}{r^{2}}$ $= kqQ \left[-\frac{1}{r} \right]_{r_{i}}^{r_{f}} = -kqQ \left[\frac{1}{r_{f}} \frac{1}{r_{i}} \right]$
- Potential energy: $U = -\int_{\infty}^{r} F dr = -kqQ \int_{\infty}^{r} \frac{dr}{r^2} = k \frac{qQ}{r}$
- Electric potential: $V(r) = \frac{kQ}{r}$

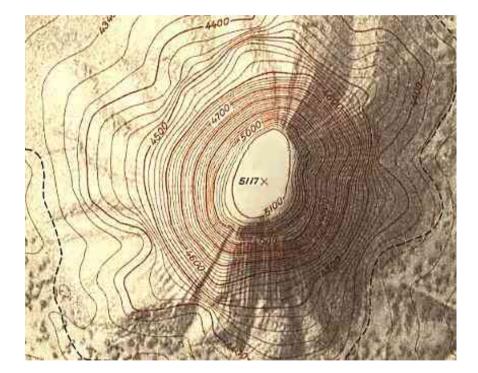

	planar source	point source	SI unit
electric field	$\vec{E} = E_x \hat{i}$	$\vec{E} = \frac{kQ}{r^2}\hat{r}$	[N/C]=[V/m]
electric potential	$V = -E_x x$	$V = \frac{kQ}{r}$	[V]=[J/C]
electric force	$\vec{F} = q\vec{E} = qE_x\hat{i}$	$\vec{F} = q\vec{E} = \frac{kQq}{r^2}\hat{r}$	[N]
electric potential energy	$U = qV = -qE_xx$	$U = qV = \frac{kQq}{r}$	[J]

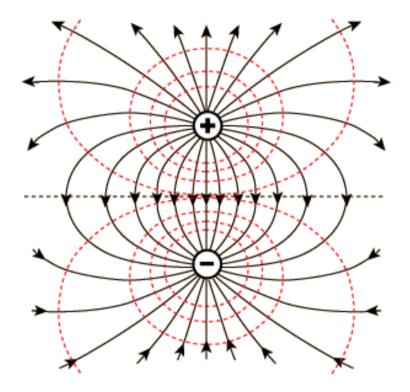

Electric field \vec{E} is present at points in space. Points in space are at electric potential V.

Charged particles experience electric force $\vec{F} = q\vec{E}$. Charged particles have electric potential energy U = qV.

Equipotential Surfaces and Field Lines

- Definition: $V(\vec{r}) = \text{const on equipotential surface.}$
- Potential energy $U(\vec{r}) = \text{const}$ for point charge q on equipotential surface.
- The surface of a conductor at equilibrium is an equipotential surface.
- Electric field vectors $\vec{E}(\vec{r})$ (tangents to field lines) are perpendicular to equipotential surface.
- Electrostatic force $\vec{F} = q\vec{E}(\vec{r})$ does zero work on point charge q moving on equipotential surface.
- The electric field $\vec{E}(\vec{r})$ exerts a force on a positive (negative) point charge q in the direction of steepest potential drop (rise).
- When a positive (negative) point charge *q* moves from a region of high potential to a region of low potential, the electric field does positive (negative) work on it. In the process, the potential energy decreases (increases).



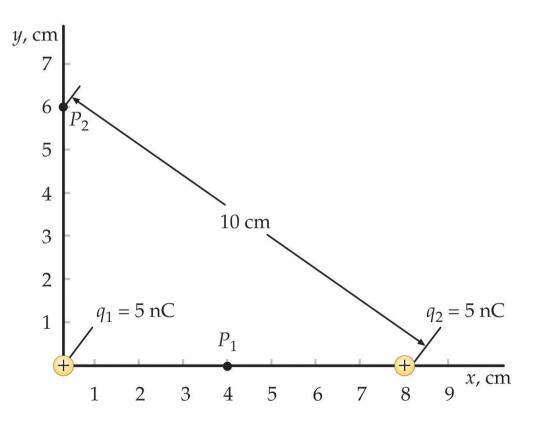


Gravitation

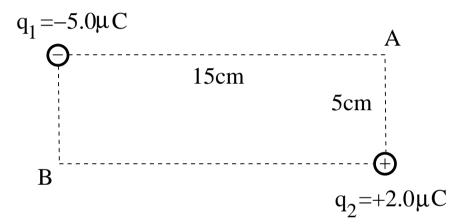
Consider a point charge $Q = 2\mu$ C fixed at position x = 0. A particle with mass m = 2g and charge $q = -0.1\mu$ C is launched at position $x_1 = 10$ cm with velocity $v_1 = 12$ m/s.

(fixed)
$$m = 2g$$

 $Q = 2\mu C$ $q = -0.1\mu C$
 \bigoplus ∇v_1
 $x = 0$ $x_1 = 10cm$ $x_2 = 20cm$

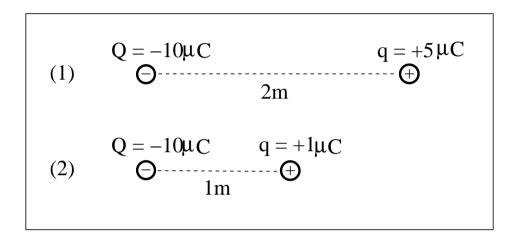

• Find the velocity v_2 of the particle when it is at position $x_2 = 20$ cm.

Electric Potential and Potential Energy: Application (2)


• Electric potential at point
$$P_1$$
: $V = \frac{nq_1}{0.04\text{m}} + \frac{nq_2}{0.04\text{m}} = 1125\text{V} + 1125\text{V} = 2250\text{V}.$

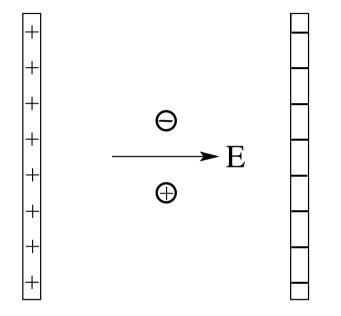
• Electric potential at point
$$P_2$$
: $V = \frac{kq_1}{0.06\text{m}} + \frac{kq_2}{0.10\text{m}} = 750\text{V} + 450\text{V} = 1200\text{V}.$

111111

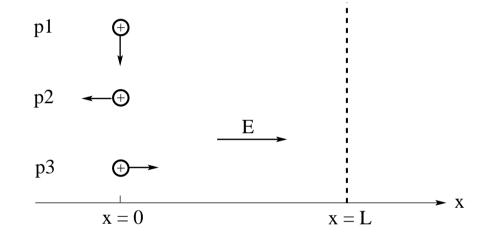

11111 NAMES DOCTOR Point charges $q_1 = -5.0\mu$ C and $q_2 = +2.0\mu$ C are positioned at two corners of a rectangle as shown.

- (a) Find the electric potential at the corners A and B.
- (b) Find the electric field at point B.
- (c) How much work is required to move a point charge $q_3 = +3\mu$ C from B to A?

Electric Potential and Potential Energy: Application (4)

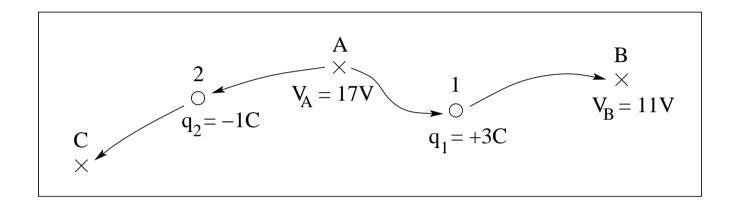

A positive point charge q is positioned in the electric field of a negative point charge Q.

- (a) In which configuration is the charge q positioned in the stronger electric field?
- (b) In which configuration does the charge q experience the stronger force?
- (c) In which configuration is the charge q positioned at the higher electric potential?
- (d) In which configuration does the charge q have the higher potential energy?


An electron and a proton are released from rest midway between oppositely charged plates.

- (a) Name the particle(s) which move(s) from high to low electric potential.
- (b) Name the particle(s) whose electric potential energy decrease(s).
- (c) Name the particle(s) which hit(s) the plate in the shortest time.
- (d) Name the particle(s) which reach(es) the highest kinetic energy before impact.

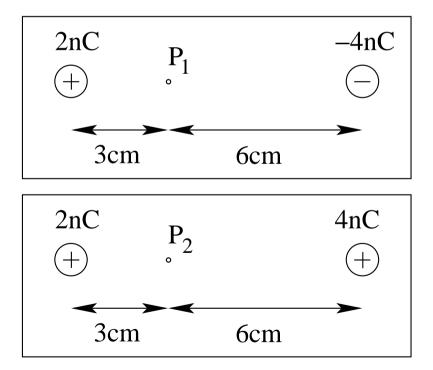
Three protons are projected from x = 0 with equal initial speed v_0 in different directions. They all experience the force of a uniform horizontal electric field \vec{E} . Ultimately, they all hit the vertical screen at x = L.


- (a) Which proton travels the longest time?
- (b) Which proton travels the longest path?
- (c) Which particle has the highest speed when it hits the screen?

Two of the questions are easy, one is hard.

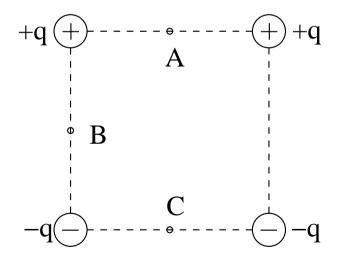
Electric Potential and Potential Energy: Application (7)

Consider a region of nonuniform electric field. Charged particles 1 and 2 start moving from rest at point A in opposite directions along the paths shown.


From the information given in the figure...

- (a) find the kinetic energy K_1 of particle 1 when it arrives at point B,
- (b) find the electric potential V_C at point C if we know that particle 2 arrives there with kinetic energy $K_2 = 8J$.

Electric Potential and Potential Energy: Application (8)


- (a) Is the electric potential at points P_1, P_2 positive or negative or zero?
- (b) Is the potential energy of a negatively charged particle at points P_1, P_2 positive or negative or zero?
- (c) Is the electric field at points P_1, P_2 directed left or right or is it zero?
- (d) Is the force on a negatively charged particle at points P_1 and P_2 directed left or right or is it zero?

Consider four point charges of equal magnitude positioned at the corners of a square as shown. Answer the following questions for points A, B, C.

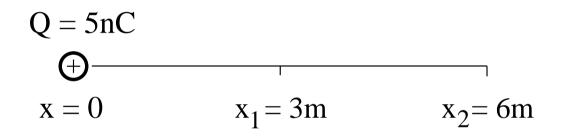
- (1) Which point is at the highest electric potential?
- (2) Which point is at the lowest electric potential?
- (3) At which point is the electric field the strongest?
- (4) At which point is the electric field the weakest?

ο

The charged particles 1 and 2 move between the charged conducting plates A and B in opposite directions.

From the information given in the figure...

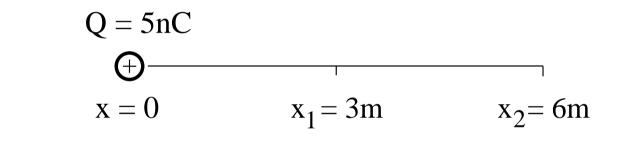
- (a) find the kinetic energy K_{1B} of particle 1,
- (b) find the charge q_2 of particle 2,
- (c) find the direction and magnitude of the electric field \vec{E} between the plates.


$$K_{1A} = 3\mu J \begin{bmatrix} q_1 = 2\mu C \\ (1) - (1) - (1) - (1) \\ q_2 = ? \\ (2) - (2) - (2) \\ (2) - ($$

Intermediate Exam I: Problem #2 (Spring '05)

Consider a point charge Q = 5nC fixed at position x = 0.

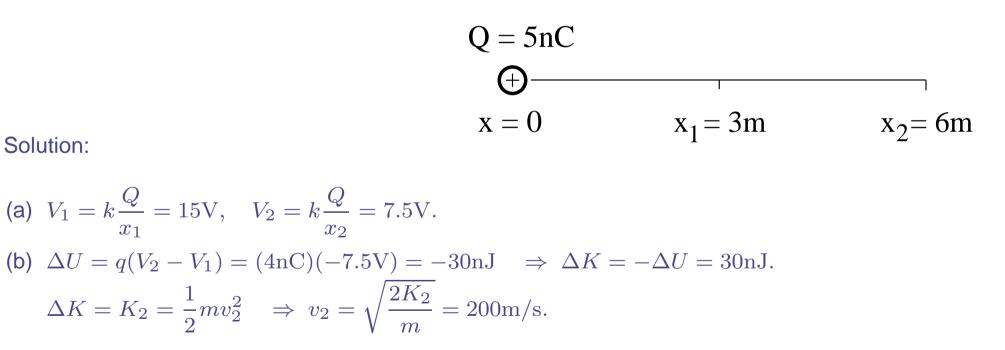
- (a) Find the electric potential V_1 at position $x_1 = 3m$ and the electric potiential V_2 at position $x_2 = 6m$.
- (b) If a charged particle (q = 4nC, m = 1.5ng) is released from rest at x_1 , what are its kinetic energy K_2 and its velocity v_2 when it reaches position x_2 ?



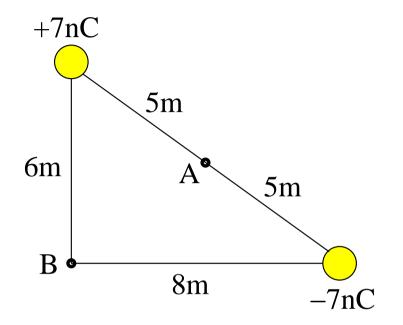
Intermediate Exam I: Problem #2 (Spring '05)

Consider a point charge Q = 5nC fixed at position x = 0.

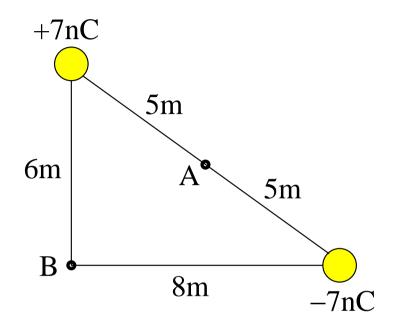
- (a) Find the electric potential V_1 at position $x_1 = 3m$ and the electric potiential V_2 at position $x_2 = 6m$.
- (b) If a charged particle (q = 4nC, m = 1.5ng) is released from rest at x_1 , what are its kinetic energy K_2 and its velocity v_2 when it reaches position x_2 ?


(a)
$$V_1 = k \frac{Q}{x_1} = 15$$
V, $V_2 = k \frac{Q}{x_2} = 7.5$ V.

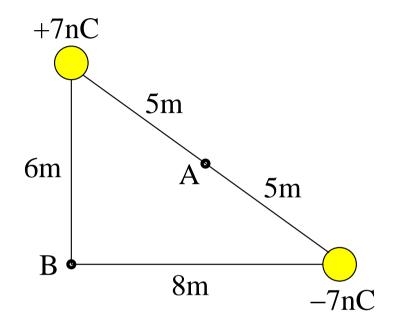
Intermediate Exam I: Problem #2 (Spring '05)


Consider a point charge Q = 5nC fixed at position x = 0.

- (a) Find the electric potential V_1 at position $x_1 = 3m$ and the electric potiential V_2 at position $x_2 = 6m$.
- (b) If a charged particle (q = 4nC, m = 1.5ng) is released from rest at x_1 , what are its kinetic energy K_2 and its velocity v_2 when it reaches position x_2 ?


- (a) Find the magnitude of the electric field at point A.
- (b) Find the electric potential at point A.
- (c) Find the magnitude of the electric field at point B.
- (d) Find the electric potential at point B.

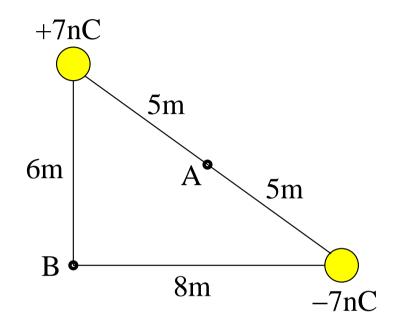
- (a) Find the magnitude of the electric field at point A.
- (b) Find the electric potential at point A.
- (c) Find the magnitude of the electric field at point B.
- (d) Find the electric potential at point B.


(a)
$$E_A = 2k \frac{|7nC|}{(5m)^2} = 2(2.52V/m) = 5.04V/m.$$

- (a) Find the magnitude of the electric field at point A.
- (b) Find the electric potential at point A.
- (c) Find the magnitude of the electric field at point B.
- (d) Find the electric potential at point B.

(a)
$$E_A = 2k \frac{|7nC|}{(5m)^2} = 2(2.52V/m) = 5.04V/m.$$

(b) $V_A = k \frac{(+7nC)}{5m} + k \frac{(-7nC)}{5m} = 12.6V - 12.6V = 0.$

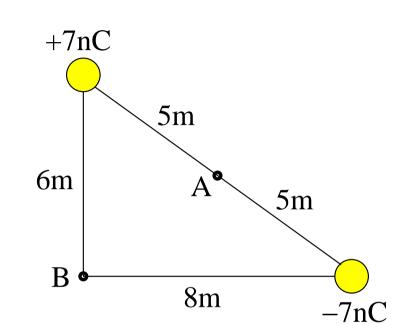


- (a) Find the magnitude of the electric field at point A.
- (b) Find the electric potential at point A.
- (c) Find the magnitude of the electric field at point B.
- (d) Find the electric potential at point B.

(a)
$$E_A = 2k \frac{|7nC|}{(5m)^2} = 2(2.52V/m) = 5.04V/m.$$

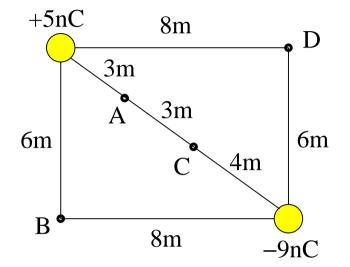
(b)
$$V_A = k \frac{(+7nC)}{5m} + k \frac{(-7nC)}{5m} = 12.6V - 12.6V = 0.$$

(c)
$$E_B = \sqrt{\left(k\frac{|\text{7nC}|}{(6\text{m})^2}\right)^2 + \left(k\frac{|\text{7nC}|}{(8\text{m})^2}\right)^2} \Rightarrow E_B = \sqrt{(1.75\text{V/m})^2 + (0.98\text{V/m})^2} = 2.01\text{V/m}.$$



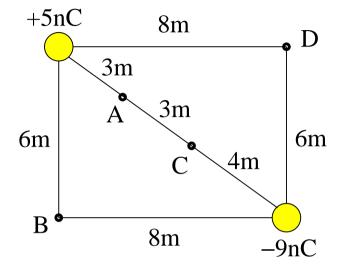
- (a) Find the magnitude of the electric field at point A.
- (b) Find the electric potential at point A.
- (c) Find the magnitude of the electric field at point B.
- (d) Find the electric potential at point B.

(a)
$$E_A = 2k \frac{|7nC|}{(5m)^2} = 2(2.52V/m) = 5.04V/m.$$

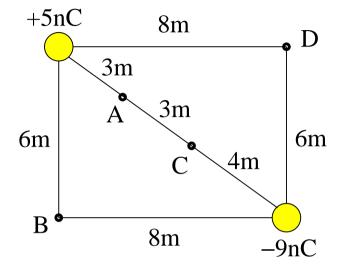

(b)
$$V_A = k \frac{(+7nC)}{5m} + k \frac{(-7nC)}{5m} = 12.6V - 12.6V = 0.$$

(c)
$$E_B = \sqrt{\left(k\frac{|7nC|}{(6m)^2}\right)^2 + \left(k\frac{|7nC|}{(8m)^2}\right)^2} \Rightarrow E_B = \sqrt{(1.75V/m)^2 + (0.98V/m)^2} = 2.01V/m.$$

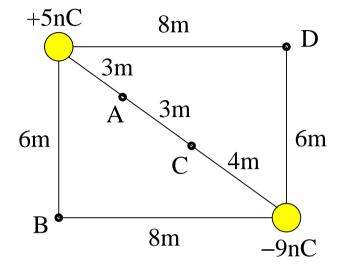
(d) $V_B = k\frac{(+7nC)}{6m} + k\frac{(-7nC)}{8m} = 10.5V - 7.9V = 2.6V.$



- Find the magnitude of the electric field at point *A*.
- Find the electric potential at point *B*.
- Find the magnitude of the electric field at point C.
- Find the electric potential at point *D*.

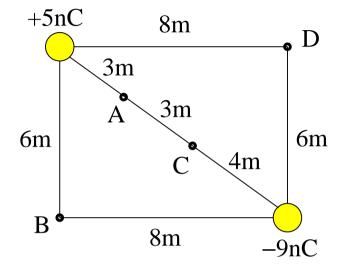

- Find the magnitude of the electric field at point *A*.
- Find the electric potential at point *B*.
- Find the magnitude of the electric field at point C.
- Find the electric potential at point *D*.

•
$$E_A = k \frac{|5nC|}{(3m)^2} + k \frac{|-9nC|}{(7m)^2} = 5.00 \text{V/m} + 1.65 \text{V/m} = 6.65 \text{V/m}.$$


- Find the magnitude of the electric field at point *A*.
- Find the electric potential at point *B*.
- Find the magnitude of the electric field at point C.
- Find the electric potential at point *D*.

•
$$E_A = k \frac{|5nC|}{(3m)^2} + k \frac{|-9nC|}{(7m)^2} = 5.00 \text{V/m} + 1.65 \text{V/m} = 6.65 \text{V/m}.$$

• $V_B = k \frac{(+5nC)}{6m} + k \frac{(-9nC)}{8m} = 7.50 \text{V} - 10.13 \text{V} = -2.63 \text{V}.$


- Find the magnitude of the electric field at point *A*.
- Find the electric potential at point *B*.
- Find the magnitude of the electric field at point C.
- Find the electric potential at point *D*.

•
$$E_A = k \frac{|5nC|}{(3m)^2} + k \frac{|-9nC|}{(7m)^2} = 5.00 \text{V/m} + 1.65 \text{V/m} = 6.65 \text{V/m}.$$

• $V_B = k \frac{(+5nC)}{6m} + k \frac{(-9nC)}{8m} = 7.50 \text{V} - 10.13 \text{V} = -2.63 \text{V}.$
• $E_C = k \frac{|5nC|}{(6m)^2} + k \frac{|-9nC|}{(4m)^2} = 1.25 \text{V/m} + 5.06 \text{V/m} = 6.31 \text{V/m}.$

- Find the magnitude of the electric field at point *A*.
- Find the electric potential at point *B*.
- Find the magnitude of the electric field at point C.
- Find the electric potential at point *D*.

•
$$E_A = k \frac{|5nC|}{(3m)^2} + k \frac{|-9nC|}{(7m)^2} = 5.00 \text{V/m} + 1.65 \text{V/m} = 6.65 \text{V/m}.$$

• $V_B = k \frac{(+5nC)}{6m} + k \frac{(-9nC)}{8m} = 7.50 \text{V} - 10.13 \text{V} = -2.63 \text{V}.$
• $E_C = k \frac{|5nC|}{(6m)^2} + k \frac{|-9nC|}{(4m)^2} = 1.25 \text{V/m} + 5.06 \text{V/m} = 6.31 \text{V/m}.$
• $V_D = k \frac{(+5nC)}{8m} + k \frac{(-9nC)}{6m} = 5.63 \text{V} - 13.5 \text{V} = -7.87 \text{V}.$