Electric Field of Continuous Charge Distribution

miĝim

- Divide the charge distribution into infinitesimal blocks.
 - For 3D applications use charge per unit volume: $\rho = \Delta Q / \Delta V$.
 - For 2D applications use charge per unit area: $\sigma = \Delta Q / \Delta A$.
 - For 1D applications use charge per unit length: $\lambda = \Delta Q / \Delta L$.
- Use Coulomb's law to calculate the electric field generated by each block.
- Use the superposition principle to calculate the resultant field from all blocks.
- Use symmetries whenever possible.

Electric Field of Charged Rod (1)

- Charge per unit length: $\lambda = Q/L$
- Charge on slice dx: $dq = \lambda dx$

• Electric field generated by slice
$$dx$$
: $dE = \frac{kdq}{x^2} = \frac{k\lambda dx}{x^2}$

• Electric field generated by charged rod:

$$E = k\lambda \int_{D}^{D+L} \frac{dx}{x^2} = k\lambda \left[-\frac{1}{x} \right]_{D}^{D+L} = k\lambda \left[\frac{1}{D} - \frac{1}{D+L} \right] = \frac{kQ}{D(D+L)}$$

• Limiting case of very short rod $(L \ll D)$: $E \simeq \frac{kQ}{D^2}$

• Limiting case of very long rod $(L \gg D)$: $E \simeq \frac{k\lambda}{D}$

Electric Field of Charged Rod (2)

- Charge per unit length: $\lambda = Q/L$
- Charge on slice dx_s : $dq = \lambda dx_s$
- Trigonometric relations:

 $y_p = r \sin \theta, \quad -x_s = r \cos \theta$ $x_s = -y_p \cot \theta, \quad dx_s = \frac{y_p d\theta}{\sin^2 \theta}$

•
$$dE = \frac{k\lambda dx_s}{r^2} = \frac{k\lambda dx_s}{y_p^2} \sin^2 \theta = \frac{k\lambda d\theta}{y_p}$$

• $dE_y = dE \sin \theta = \frac{k\lambda}{y_p} \sin \theta d\theta \Rightarrow E_y = \frac{k\lambda}{y_p} \int_{\theta_1}^{\theta_2} \sin \theta d\theta = -\frac{k\lambda}{y_p} (\cos \theta_2 - \cos \theta_1)$
• $dE_x = dE \cos \theta = \frac{k\lambda}{y_p} \cos \theta d\theta \Rightarrow E_x = \frac{k\lambda}{y_p} \int_{\theta_1}^{\theta_2} \cos \theta d\theta = \frac{k\lambda}{y_p} (\sin \theta_2 - \sin \theta_1)$

Symmetry dictates that the resulting electric field is directed radially.

- $\theta_2 = \pi \theta_1$, $\Rightarrow \sin \theta_2 = \sin \theta_1$, $\cos \theta_2 = -\cos \theta_1$.
- $\cos \theta_1 = \frac{L/2}{\sqrt{L^2/4 + R^2}}$. • $E_R = -\frac{k\lambda}{R} \left(\cos \theta_2 - \cos \theta_1\right) = \frac{k\lambda}{R} \frac{L}{\sqrt{L^2/4 + R^2}}$.

•
$$E_z = \frac{k\lambda}{R} (\sin\theta_2 - \sin\theta_1) = 0.$$

- Large distance $(R \gg L)$: $E_R \simeq \frac{kQ}{R^2}$.
- Small distances $(R \ll L)$: $E_R \simeq \frac{2k\lambda}{R}$
- Rod of infinite length: $\vec{E} = \frac{2k\lambda}{R}\hat{R}$.

Symmetry dictates that the resulting electric field is directed radially.

- Charge per unit length: $\lambda = Q/L$
- Charge on slice dx: $dq = \lambda dx$

•
$$dE = \frac{kdq}{r^2} = \frac{k\lambda dx}{x^2 + y^2}$$

• $dE_y = dE \cos \theta = \frac{dEy}{\sqrt{x^2 + y^2}} = \frac{k\lambda ydx}{(x^2 + y^2)^{3/2}}$
• $E_y = \int_{-L/2}^{+L/2} \frac{k\lambda ydx}{(x^2 + y^2)^{3/2}} = \left[\frac{k\lambda yx}{y^2\sqrt{x^2 + y^2}}\right]_{-L/2}^{+L/2} dE$
• $E_y = \frac{k\lambda L}{y\sqrt{(L/2)^2 + y^2}} = \frac{kQ}{y\sqrt{(L/2)^2 + y^2}}$
• Large distance $(y \gg L)$: $E_y \simeq \frac{kQ}{y^2}$
• Small distances $(y \ll L)$: $E_y \simeq \frac{2k\lambda}{y}$
 $-L/2$
 $+L/2$
 $+L/2$

Electric Field of Charged Ring

- Total charge on ring: Q
- Charge per unit length: $\lambda = Q/2\pi a$
- Charge on arc: dq

•
$$dE = \frac{kdq}{r^2} = \frac{kdq}{x^2 + a^2}$$

• $dE_x = dE \cos \theta = dE \frac{x}{\sqrt{x^2 + a^2}} = \frac{kxdq}{(x^2 + a^2)^{3/2}}$
• $E_x = \frac{kx}{(x^2 + a^2)^{3/2}} \int dq \Rightarrow E_x = \frac{kQx}{(x^2 + a^2)^{3/2}}$
• $|x| \ll a : E_x \simeq \frac{kQx}{a^3}, \qquad x \gg a : E_x \simeq \frac{kQ}{x^2}$
• $(dE_x/dx)_{x=x_0} = 0 \Rightarrow x_0 = \pm a/\sqrt{2}$

Charged Bead Moving Along Axis of Charged Ring

Consider a negatively charged bead (mass m, charge -q) constrained to move without friction along the axis of a positively charged ring.

- Place bead on *x*-axis near center of ring: $|x| \ll a$: $E_x \simeq \frac{kQx}{a^3}$
- Restoring force: $F = -qE_x = -k_s x$ with $k_s = \frac{kQq}{a^3}$

• Harmonic oscillation:
$$x(t) = A\cos(\omega t + \phi)$$

• Angular frequency: $\omega = \sqrt{\frac{k_s}{m}} = \sqrt{\frac{kQq}{ma^3}}$

Electric Field of Charged Disk

- Charge per unit area: $\sigma = \frac{Q}{\pi R^2}$
- Area of ring: $dA = 2\pi a da$
- Charge on ring: $dq = 2\pi\sigma a da$

•
$$dE_x = \frac{kxdq}{(x^2 + a^2)^{3/2}} = \frac{2\pi\sigma kxada}{(x^2 + a^2)^{3/2}}$$

• $E_x = 2\pi\sigma kx \int_0^R \frac{ada}{(x^2 + a^2)^{3/2}} = 2\pi\sigma kx \left[\frac{-1}{\sqrt{x^2 + a^2}}\right]_0^R$
• $E_x = 2\pi\sigma k \left[1 - \frac{x}{\sqrt{x^2 + R^2}}\right]$ for $x > 0$

- $x \ll R$: $E_x \simeq 2\pi\sigma k$
- Infinite sheet of charge produces uniform electric field perpendicular to plane.

Electric Field of Charged Rubber Band

The electric field at position x along the line of a charged rubber band is

$$E = \frac{kQ}{x(x+L)}$$

The value of E at $x_1 = 1$ m is $E_1 = 16$ N/C.

- (a) What is the electric field E_2 at a distance $x_2 = 2m$ from the edge of the band?
- (b) To what length L_2 must the band be stretched (toward the left) such that it generates the field $E_2 = 8$ N/C at $x_1 = 1$ m?

Consider four configurations of two charged rods with equal amounts of charge per unit length $|\lambda|$ on them.

- (a) Determine the direction of the electric field at points P_1, P_2, P_3, P_4 .
- (b) Rank the electric field at the four points according to strength.

Consider a uniformly charged thin rod bent into a semicircle of radius R.

Find the electric field generated at the origin of the coordinate system.

- Charge per unit length: $\lambda = Q/\pi R$
- Charge on slice: $dq = \lambda R d\theta$ (assumed positive)
- Electric field generated by slice: $dE = k \frac{|dq|}{R^2} = \frac{k|\lambda|}{R} d\theta$ directed radially (inward for $\lambda > 0$)
- Components of $d\vec{E}$: $dE_x = dE\cos\theta$, $dE_y = -dE\sin\theta$
- Electric field from all slices added up:

$$E_x = \frac{k\lambda}{R} \int_0^\pi \cos\theta \, d\theta = \frac{k\lambda}{R} [\sin\theta]_0^\pi = 0$$
$$E_y = -\frac{k\lambda}{R} \int_0^\pi \sin\theta \, d\theta = \frac{k\lambda}{R} [\cos\theta]_0^\pi = -\frac{2k\lambda}{R}$$

Consider a surface *S* of arbitrary shape in the presence of an electric field \vec{E} . Prescription for the calculation of the electric flux through *S*:

- Divide S into small tiles of area ΔA_i .
- Introduce vector $\Delta \vec{A}_i = \hat{n}_i \Delta A_i$ perpendicular to tile.
 - If S is open choose consistently one of two possible directions for $\Delta \vec{A}_i$.
 - If S is closed choose $\Delta \vec{A_i}$ to be directed outwar
- Electric field at position of tile *i*: $\vec{E_i}$.
- Electric flux through tile *i*: $\Delta \Phi_i^{(E)} = \vec{E}_i \cdot \Delta \vec{A}_i = E_i \Delta A_i \cos \theta_i.$
- Electric flux through S: $\Phi_E = \sum_i \vec{E}_i \cdot \Delta \vec{A}_i$.
- Limit of infinitesimal tiles: $\Phi_E = \int \vec{E} \cdot d\vec{A}$.
- Electric flux is a scalar.
- The SI unit of electric flux is Nm²/C.

Electric Flux: Illustration

Electric Flux: Application (1)

Consider a rectangular sheet oriented perpendicular to the yz plane as shown and positioned in a uniform electric field $\vec{E} = (2\hat{j})N/C$.

- (a) Find the area A of the sheet.
- (b) Find the angle between \vec{A} and \vec{E} .
- (c) Find the electric flux through the sheet.

Electric Flux: Application (2)

Consider a plane sheet of paper whose orientation in space is described by the area vector $\vec{A} = (3\hat{j} + 4\hat{k})m^2$ positioned in a region of uniform electric field $\vec{E} = (1\hat{i} + 5\hat{j} - 2\hat{k})N/C$.

- (a) Find the area of the sheet.
- (b) Find the magnitude of the electric field.
- (c) Find the electric flux through the sheet.
- (d) Find the angle between \vec{A} and \vec{E} .

Electric Flux: Application (3)

The room shown below is positioned in an electric field $\vec{E} = (3\hat{i} + 2\hat{j} + 5\hat{k})$ N/C.

- (a) What is the electric flux Φ_E through the closed door?
- (b) What is the electric flux Φ_E through the door opened at $\theta = 90^{\circ}$?
- (c) At what angle θ_1 is the electric flux through the door zero?
- (d) At what angle θ_2 is the electric flux through the door a maximum?

Electric Flux: Application (4)

Consider a positive point charge Q at the center of a spherical surface of radius R. Calculate the electric flux through the surface.

- \vec{E} is directed radially outward. Hence \vec{E} is parallel to $d\vec{A}$ everywhere on the surface.
- \vec{E} has the same magnitude, $E = kQ/R^2$, everywhere on the surface.
- The area of the spherical surface is $A = 4\pi R^2$.
- Hence the electric flux is $\Phi_E = EA = 4\pi kQ$.
- Note that Φ_E is independent of R.

Intermediate Exam I: Problem #3 (Spring '05)

Consider two plane surfaces with area vectors $\vec{A_1}$ (pointing in positive *x*-direction) and $\vec{A_2}$ (pointing in positive *z*-direction). The region is filled with a uniform electric field $\vec{E} = (2\hat{i} + 7\hat{j} - 3\hat{k})$ N/C.

- (a) Find the electric flux $\Phi_E^{(1)}$ through area A_1 .
- (b) Find the electric flux $\Phi_E^{(2)}$ through area A_2 .

1/9/2015 [tsl333 - 18/19]

Intermediate Exam I: Problem #3 (Spring '05)

Consider two plane surfaces with area vectors $\vec{A_1}$ (pointing in positive *x*-direction) and $\vec{A_2}$ (pointing in positive *z*-direction). The region is filled with a uniform electric field $\vec{E} = (2\hat{i} + 7\hat{j} - 3\hat{k})$ N/C.

- (a) Find the electric flux $\Phi_E^{(1)}$ through area A_1 .
- (b) Find the electric flux $\Phi_E^{(2)}$ through area A_2 .

Solution:

(a)
$$\vec{A}_1 = 6\hat{i} \,\mathrm{m}^2$$
,
 $\Phi_E^{(1)} = \vec{E} \cdot \vec{A}_1 = (2\mathrm{N/C})(6\mathrm{m}^2) = 12\mathrm{Nm}^2/\mathrm{C}$.

1/9/2015 [tsl333 - 18/19]

Intermediate Exam I: Problem #3 (Spring '05)

Consider two plane surfaces with area vectors $\vec{A_1}$ (pointing in positive *x*-direction) and $\vec{A_2}$ (pointing in positive *z*-direction). The region is filled with a uniform electric field $\vec{E} = (2\hat{i} + 7\hat{j} - 3\hat{k})$ N/C.

- (a) Find the electric flux $\Phi_E^{(1)}$ through area A_1 .
- (b) Find the electric flux $\Phi_E^{(2)}$ through area A_2 .

Solution:

- (a) $\vec{A}_1 = 6\hat{i} \,\mathrm{m}^2$, $\Phi_E^{(1)} = \vec{E} \cdot \vec{A}_1 = (2\mathrm{N/C})(6\mathrm{m}^2) = 12\mathrm{Nm}^2/\mathrm{C}.$
- (b) $\vec{A}_2 = 12\hat{k}\,\mathrm{m}^2$, $\Phi_E^{(2)} = \vec{E} \cdot \vec{A}_2 = (-3\mathrm{N/C})(12\mathrm{m}^2) = -36\mathrm{Nm}^2/\mathrm{C}.$

Consider three plane surfaces (one circle and two rectangles) with area vectors $\vec{A_1}$ (pointing in positive *x*-direction), $\vec{A_2}$ (pointing in negative *z*-direction), and $\vec{A_3}$ (pointing in negative *y*-direction) as shown. The region is filled with a uniform electric field $\vec{E} = (-3\hat{i} + 9\hat{j} - 4\hat{k})$ N/C or $\vec{E} = (2\hat{i} - 6\hat{j} + 5\hat{k})$ N/C.

- (a) Find the electric flux $\Phi_E^{(1)}$ through surface 1.
- (b) Find the electric flux $\Phi_E^{(2)}$ through surface 2.
- (c) Find the electric flux $\Phi_E^{(3)}$ through surface 3.

Solution:

(a)
$$\vec{A}_1 = \pi (1.5 \text{m})^2 \hat{i} = 7.07 \text{m}^2 \hat{i}, \quad \Phi_E^{(1)} = \vec{E} \cdot \vec{A}_1 = (-3 \text{N/C})(7.07 \text{m}^2) = -21.2 \text{Nm}^2/\text{C}.$$

 $\vec{A}_1 = \pi (1.5 \text{m})^2 \hat{i} = 7.07 \text{m}^2 \hat{i}, \quad \Phi_E^{(1)} = \vec{E} \cdot \vec{A}_1 = (2 \text{N/C})(7.07 \text{m}^2) = 14.1 \text{Nm}^2/\text{C}.$

(b)
$$\vec{A}_2 = (3m)(4m)(-\hat{k}) = -12m^2\hat{k}, \quad \Phi_E^{(2)} = \vec{E} \cdot \vec{A}_2 = (-4N/C)(-12m^2) = 48Nm^2/C.$$

 $\vec{A}_2 = (3m)(4m)(-\hat{k}) = -12m^2\hat{k}, \quad \Phi_E^{(2)} = \vec{E} \cdot \vec{A}_2 = (5N/C)(-12m^2) = -60Nm^2/C.$

(b)
$$\vec{A}_3 = (3m)(4m)(-\hat{j}) = -12m^2\hat{j}, \quad \Phi_E^{(3)} = \vec{E} \cdot \vec{A}_3 = (9N/C)(-12m^2) = -108Nm^2/C.$$

 $\vec{A}_3 = (3m)(4m)(-\hat{j}) = -12m^2\hat{j}, \quad \Phi_E^{(3)} = \vec{E} \cdot \vec{A}_3 = (-6N/C)(-12m^2) = 72Nm^2/C.$