

particle	charge	mass
electron	$q_e = -e$	$m_e = 9.109 \times 10^{-31} \mathrm{kg}$
proton	$q_p = +e$	
neutron	$q_n = 0$	$m_n = 1.675 \times 10^{-27} \mathrm{kg}$

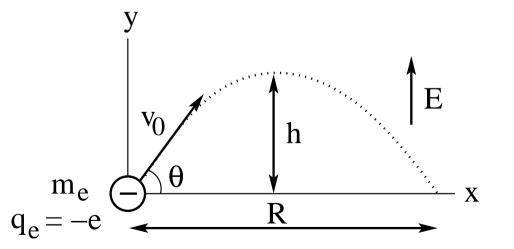
Elementary charge: $e = 1.602 \times 10^{-19}$ C.

Electric field

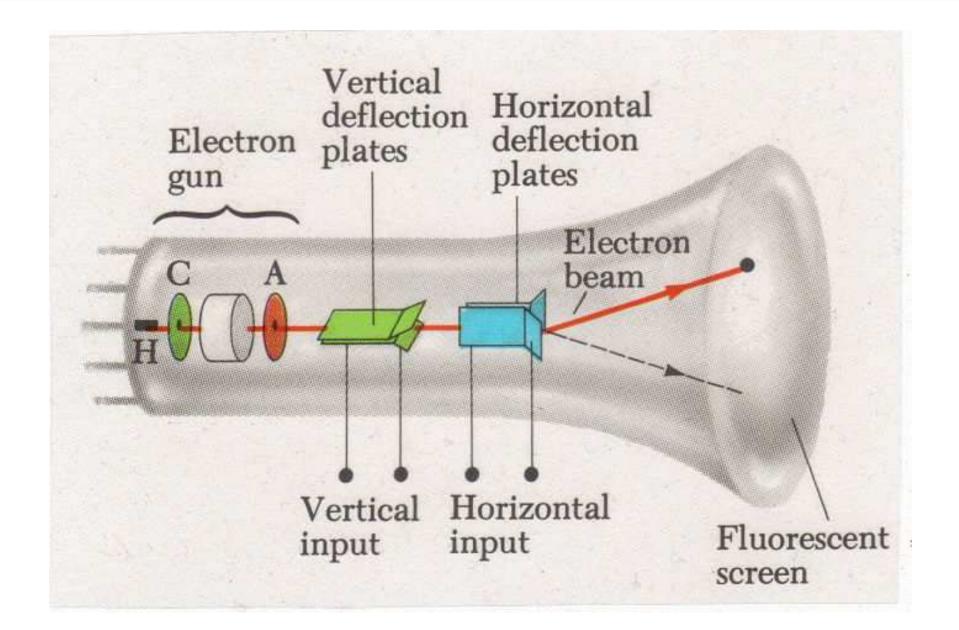
- equation of motion: $\vec{F} = m\vec{a}$
- force law: $\vec{F} = q\vec{E}$
- acceleration: $\vec{a} = (q/m)\vec{E}$

Gravitational field

- equation of motion: $\vec{F} = m\vec{a}$
- force law: $\vec{F} = m\vec{g}$
- acceleration: $\vec{a} = \vec{g}$

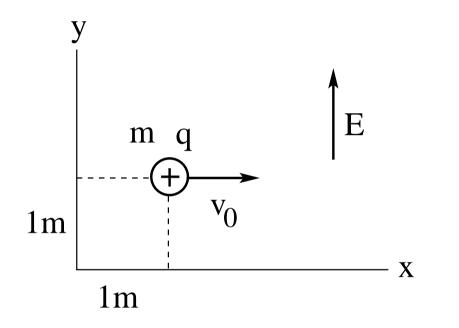


Projectile Motion in Electric Field


- electrostatic force: $F_x = 0$ $F_y = -eE$
- equation of motion: $\vec{F} = m_e \vec{a}$
- acceleration: $a_x = 0$ $a_y = -\frac{e}{m_e}E \equiv -a$
- velocity: $v_x(t) = v_0 \cos \theta$ $v_y(t) = v_0 \sin \theta at$
- position: $x(t) = v_0 [\cos \theta] t$ $y(t) = v_0 [\sin \theta] t \frac{1}{2} a t^2$

• height: $h = \frac{v_0^2}{2a} \sin^2 \theta$ • range: $R = \frac{v_0^2}{a} \sin(2\theta)$

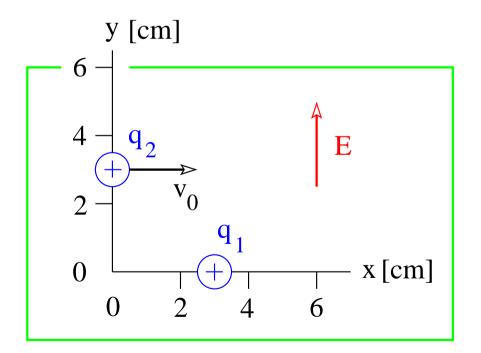
Cathode Ray Tube



Particle Projected Perpendicular to Uniform Electric Field

might

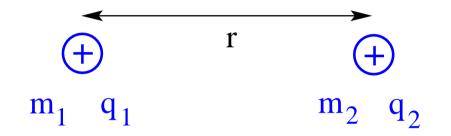
A charged particle $(m = 3 \text{kg}, q = 1 \mu \text{C})$ is launched at $t_0 = 0$ with initial speed $v_0 = 2 \text{m/s}$ in an electric field of magnitude $E = 6 \times 10^6 \text{N/C}$ as shown.



- (a) Find the position of the particle at $t_1 = 3$ s.
- (b) By what angle does the velocity vector turn between $t_0 = 0$ and $t_1 = 3$ s?

A uniform electric field $E = 0.75 \times 10^3$ N/C exists in the box.

- (a) A charged particle of mass $m_1 = 1.9 \times 10^{-9}$ kg is released from rest at x = 3cm, y = 0. It exits the box at x = 3cm, y = 6cm after a time $t_1 = 5.7 \times 10^{-5}$ s. Find the charge q_1 .
- (b) A second charged particle of mass $m_2 = 2.7 \times 10^{-14}$ kg is projected from position x = 0, y = 3cm with initial speed $v_0 = 3.2 \times 10^4$ m/s. It exits the box at x = 3.9cm, y = 6cm. Find the charge q_2 .

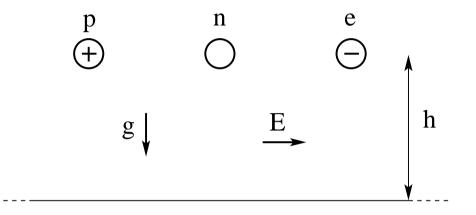


Action and Reaction due to Coulomb Interaction

Two particles with masses m_1, m_2 and charges q_1, q_2 are released from rest a distance r apart.

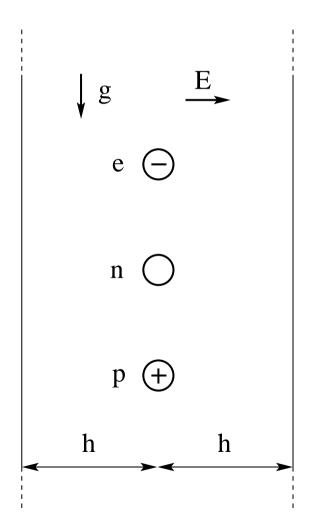
We consider the following four distinct configurations:

- (a) $m_1 = 1$ kg, $m_2 = 1$ kg, $q_1 = 1$ C, $q_2 = 1$ C
- (b) $m_1 = 1$ kg, $m_2 = 1$ kg, $q_1 = 1$ C, $q_2 = 2$ C
- (c) $m_1 = 1$ kg, $m_2 = 2$ kg, $q_1 = 1$ C, $q_2 = 1$ C
- (d) $m_1 = 1$ kg, $m_2 = 2$ kg, $q_1 = 1$ C, $q_2 = 2$ C



Anwer the following questions for each configuration:

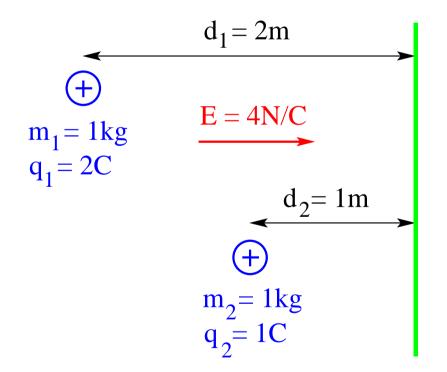
- (1) Is the force experienced by particle 1
 smaller than Or equal to Or larger than the force experienced by particle 2?
- (2) Is the acceleration of particle 1 smaller than Or equal to Or larger than the acceleration of particle 2?


A proton, a neutron, and an electron are dropped from rest in a vertical gravitational field \vec{g} and in a horizontal electric field \vec{E} as shown. Both fields are uniform.

- (a) Which particle travels the shortest distance?
- (b) Which particle travels the longest distance?
- (c) Which particle travels the shortest time?
- (d) Which particle reaches the highest speed?

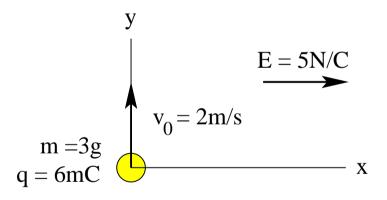
A proton, a neutron, and an electron are dropped from rest in a vertical gravitational field \vec{g} and in a horizontal electric field \vec{E} as shown. Both fields are uniform.

- (a) Which particle travels the shortest distance?
- (b) Which particle travels in a straight line?
- (c) Which particle travels the shortest time?
- (d) Which particle reaches the highest speed?

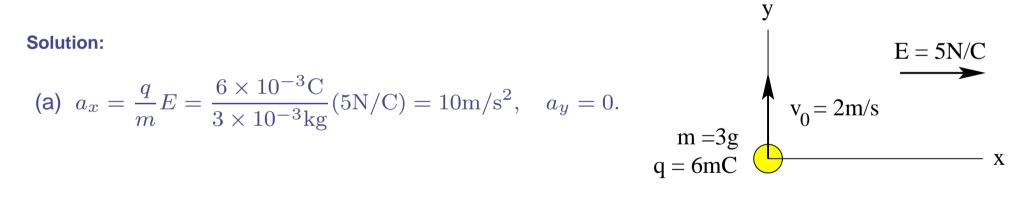


Is the Faster also the Quicker?

min

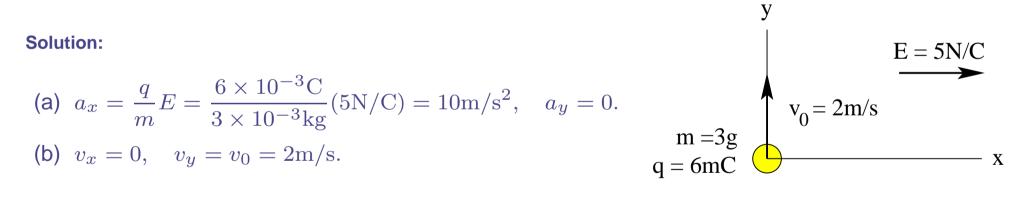

Charged particles 1 and 2 are released from rest in a uniform electric field.

- (a) Which particle moves faster when it hits the wall?
- (b) Which particle reaches the wall more quickly?

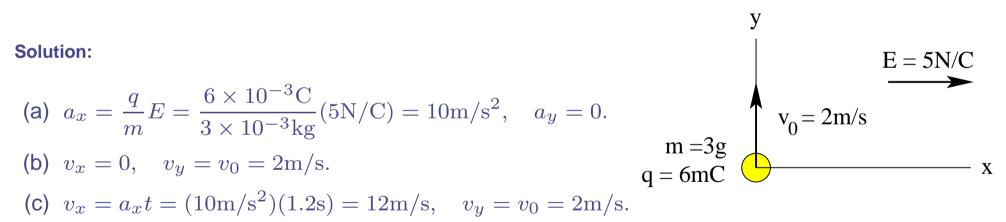


Intermediate Exam I: Problem #3 (Spring '06)

- (a) Find the components a_x and a_y of the acceleration at time t = 0.
- (b) Find the components v_x and v_y of the velocity at time t = 0.
- (c) Find the components v_x and v_y of the velocity at time t = 1.2s.
- (d) Find the components x and y of the position at time t = 1.2s.



- (a) Find the components a_x and a_y of the acceleration at time t = 0.
- (b) Find the components v_x and v_y of the velocity at time t = 0.
- (c) Find the components v_x and v_y of the velocity at time t = 1.2s.
- (d) Find the components x and y of the position at time t = 1.2s.



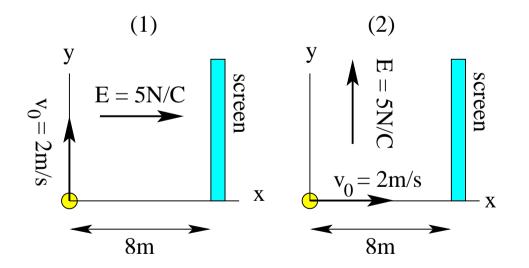
- (a) Find the components a_x and a_y of the acceleration at time t = 0.
- (b) Find the components v_x and v_y of the velocity at time t = 0.
- (c) Find the components v_x and v_y of the velocity at time t = 1.2s.
- (d) Find the components x and y of the position at time t = 1.2s.

- (a) Find the components a_x and a_y of the acceleration at time t = 0.
- (b) Find the components v_x and v_y of the velocity at time t = 0.
- (c) Find the components v_x and v_y of the velocity at time t = 1.2s.
- (d) Find the components x and y of the position at time t = 1.2s.

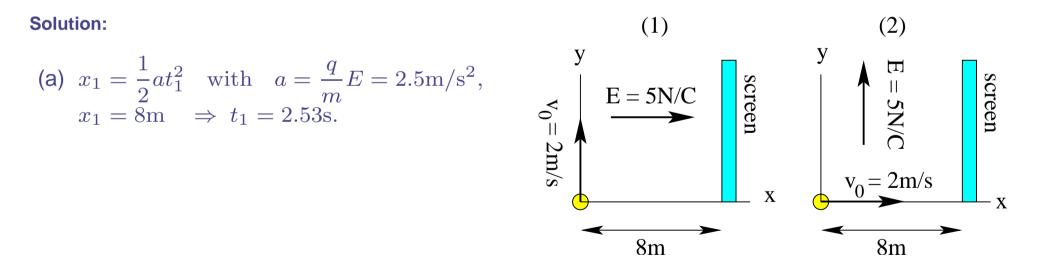
- (a) Find the components a_x and a_y of the acceleration at time t = 0.
- (b) Find the components v_x and v_y of the velocity at time t = 0.
- (c) Find the components v_x and v_y of the velocity at time t = 1.2s.
- (d) Find the components x and y of the position at time t = 1.2s.

(a)
$$a_x = \frac{q}{m}E = \frac{6 \times 10^{-3}C}{3 \times 10^{-3}kg}(5N/C) = 10m/s^2, \quad a_y = 0.$$

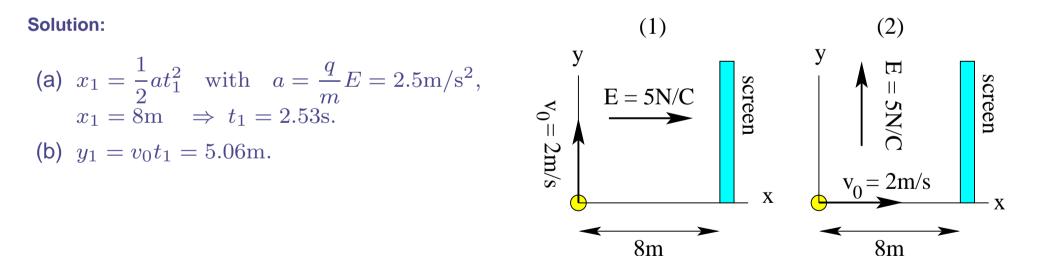
(b) $v_x = 0, \quad v_y = v_0 = 2m/s.$
(c) $v_x = a_x t = (10m/s^2)(1.2s) = 12m/s, \quad v_y = v_0 = 2m/s.$


(d)
$$x = \frac{1}{2}a_x t^2 = 0.5(10 \text{m/s}^2)(1.2 \text{s})^2 = 7.2 \text{m}, \quad y = v_y t = (2 \text{m/s})(1.2 \text{s}) = 2.4 \text{m}.$$

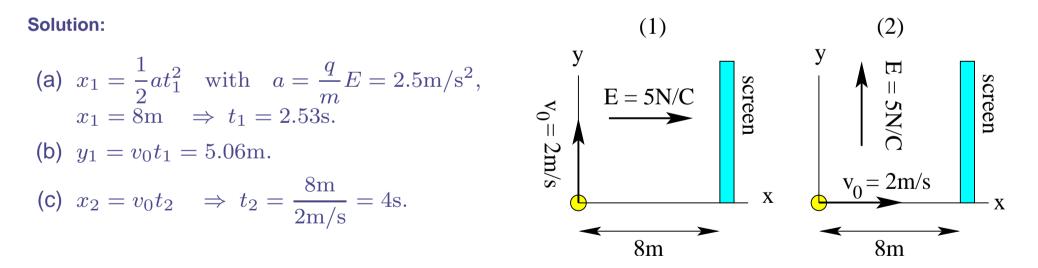
E = 5N/C


У

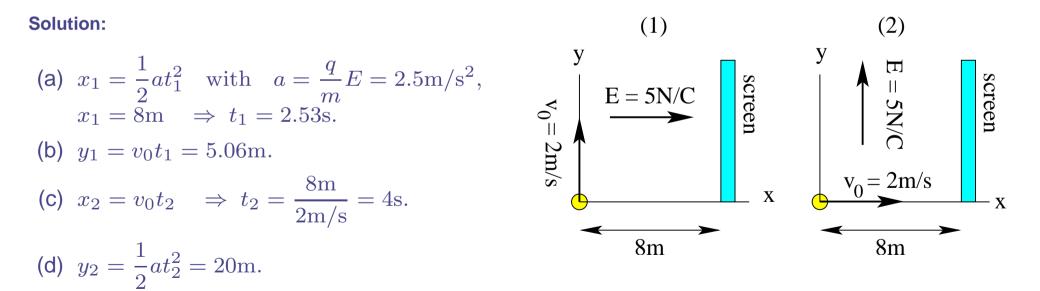
- (a) At what time t_1 does the particle in region (1) hit the screen?
- (b) At what height y_1 does the particle in region (1) hit the screen?
- (c) At what time t_2 does the particle in region (2) hit the screen?
- (d) At what height y_2 does the particle in region (2) hit the screen?



- (a) At what time t_1 does the particle in region (1) hit the screen?
- (b) At what height y_1 does the particle in region (1) hit the screen?
- (c) At what time t_2 does the particle in region (2) hit the screen?
- (d) At what height y_2 does the particle in region (2) hit the screen?

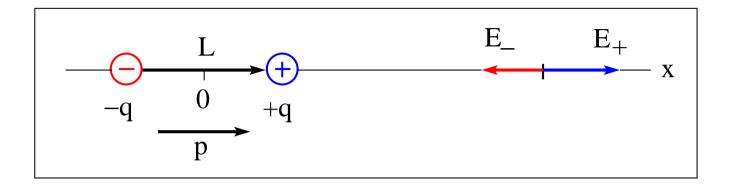


- (a) At what time t_1 does the particle in region (1) hit the screen?
- (b) At what height y_1 does the particle in region (1) hit the screen?
- (c) At what time t_2 does the particle in region (2) hit the screen?
- (d) At what height y_2 does the particle in region (2) hit the screen?



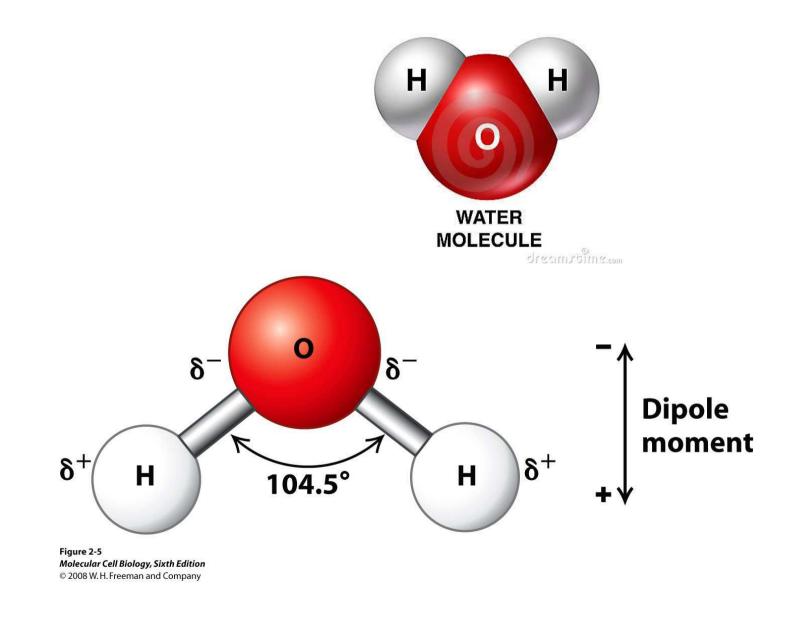
shown. Charged particles of mass m = 2kg and

- (a) At what time t_1 does the particle in region (1) hit the screen?
- (b) At what height y_1 does the particle in region (1) hit the screen?
- (c) At what time t_2 does the particle in region (2) hit the screen?
- (d) At what height y_2 does the particle in region (2) hit the screen?



- (a) At what time t_1 does the particle in region (1) hit the screen?
- (b) At what height y_1 does the particle in region (1) hit the screen?
- (c) At what time t_2 does the particle in region (2) hit the screen?
- (d) At what height y_2 does the particle in region (2) hit the screen?

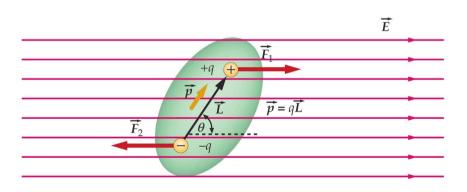
Electric Dipole Field

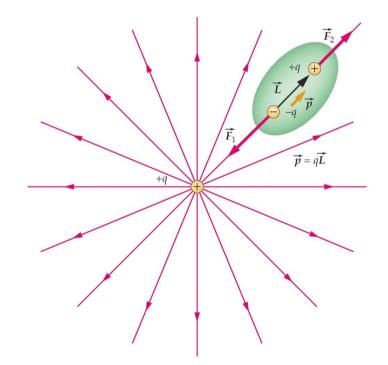

$$E = \frac{kq}{(x-L/2)^2} - \frac{kq}{(x+L/2)^2} = kq \left[\frac{(x+L/2)^2 - (x-L/2)^2}{(x-L/2)^2 (x+L/2)^2} \right] = \frac{2kqLx}{(x^2 - L^2/4)^2}$$
$$\simeq \frac{2kqL}{x^3} = \frac{2kp}{x^3} \quad \text{(for } x \gg L\text{)}$$

Electric dipole moment: $\vec{p} = q\vec{L}$

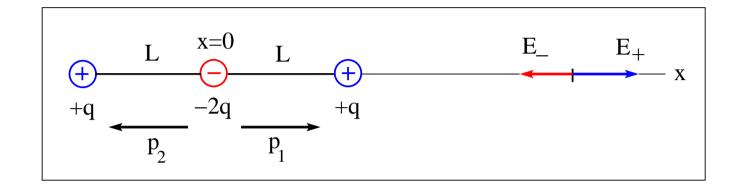
- Note the more rapid decay of the electric field with distance from an electric dipole ($\sim r^{-3}$) than from an electric point charge ($\sim r^{-2}$).
- The dipolar field is not radial.

Water Molecule





Force and Torque on Electric Dipole


- The net force on an electric dipole in a *uniform* electric field vanishes.
- However, this dipole experiences a torque $\vec{\tau} = \vec{p} \times \vec{L}$ that tends to align the vector \vec{p} with the vector \vec{E} .
- Now consider an electric dipole that is already aligned (locally) with a *nonuniform* electric field. This dipole experiences a net force that is always in the direction where the field has the steepest increase.

Electric Quadrupole Field

$$E = \frac{kq}{(x-L)^2} + \frac{kq}{(x+L)^2} + \frac{k(-2q)}{x^2} = \frac{kq}{x^2} \left[\left(1 - \frac{L}{x} \right)^{-2} + \left(1 + \frac{L}{x} \right)^{-2} - 2 \right]$$

$$= \frac{kq}{x^2} \left[\left(1 + \frac{2L}{x} + \frac{3L^2}{x^2} + \cdots \right) + \left(1 - \frac{2L}{x} + \frac{3L^2}{x^2} - \cdots \right) - 2 \right]$$

$$\simeq \frac{6kqL^2}{x^4} = \frac{3kQ}{x^4} \quad \text{(for } x \gg L) \qquad -q \qquad + q$$

Electric quadrupole moment: $Q = 2qL^2$
$$L$$

+q (+)-

Different quadrupole configuration:

_ −q