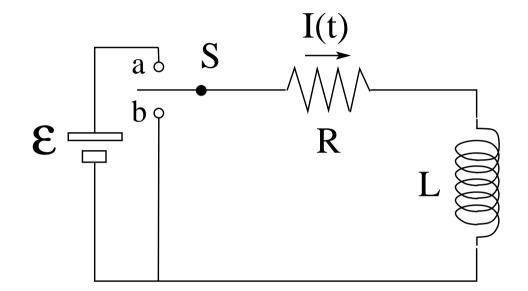
RL Circuit: Fundamentals



Specifications:

- *E* (emf)
- R (resistance)
- L (inductance)

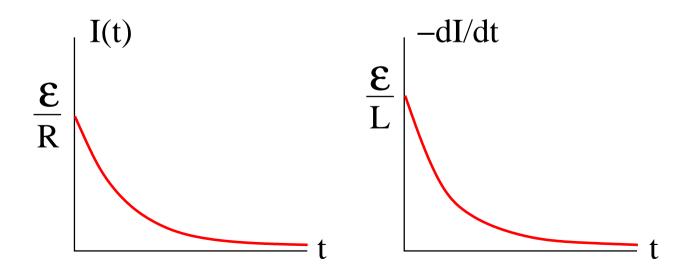
Switch *S*:

- a: current buildup
- b: current shutdown

Time-dependent quantities:

- I(t): instantaneous current through inductor
- $\frac{dI}{dt}$: rate of change of instantaneous current
- $V_R(t) = I(t)R$: instantaneous voltage across resistor
- $V_L(t) = L \frac{dI}{dt}$: instantaneous voltage across inductor

RL Circuit: Current Buildup in Inductor

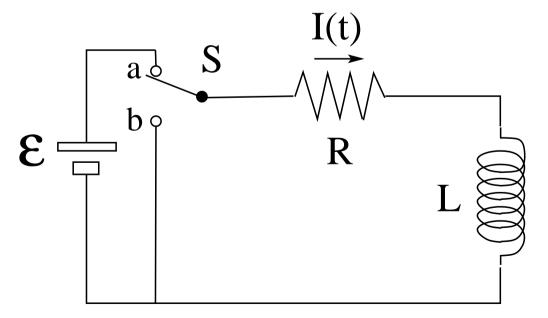

• Loop rule: $\mathcal{E} - IR - L \frac{dI}{d^4} = 0$ • Differential equation: $L\frac{dI}{dt} = \mathcal{E} - IR \implies \frac{dI}{dt} = \frac{\mathcal{E}/R - I}{L/R}$ $\int_0^I \frac{dI}{\mathcal{E}/R - I} = \int_0^t \frac{dt}{L/R} \quad \Rightarrow \quad -\ln\left(\frac{\mathcal{E}/R - I}{\mathcal{E}/R}\right) = \frac{t}{L/R} \quad \Rightarrow \quad \frac{\mathcal{E}/R - I}{\mathcal{E}/R} = e^{-Rt/L}$ • Current through inductor: $I(t) = \frac{\mathcal{E}}{R} \left[1 - e^{-Rt/L} \right]$ • Rate of current change: $\frac{dI}{dt} = \frac{\mathcal{E}}{L} e^{-Rt/L}$ I(t)dI/dt $\frac{\mathbf{E}}{\mathbf{R}}$ t

RL Circuit: Current Shutdown in Inductor



• Loop rule: $-IR - L\frac{dI}{dt} = 0$ • Differential equation: $L\frac{dI}{dt} + IR = 0 \Rightarrow \frac{dI}{dt} = -\frac{R}{L}I$ $\Rightarrow \int_{\mathcal{E}/R}^{I} \frac{dI}{I} = -\frac{R}{L}\int_{0}^{t} dt \Rightarrow \ln \frac{I}{\mathcal{E}/R} = -\frac{R}{L}t \Rightarrow \frac{I}{\mathcal{E}/R} = e^{-Rt/L}$ • Current: $I(t) = \frac{\mathcal{E}}{R} e^{-Rt/L}$

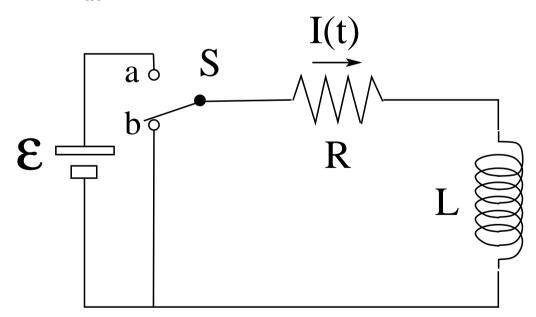
• Rate of current change:
$$\frac{dI}{dt} = -\frac{\mathcal{E}}{L} e^{-Rt/L}$$



RL Circuit: Energy Transfer During Current Buildup

- *IE*: rate at which EMF source delivers energy
- $IV_R = I^2 R$: rate at which energy is dissipated in resistor
- $IV_L = LI \frac{dI}{dt}$: rate at which energy is stored in inductor

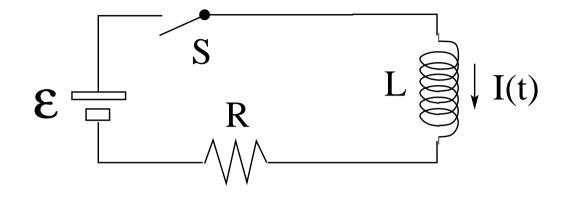
Balance of energy transfer: $I^2 R + LI \frac{dI}{dt} = I\mathcal{E}$


RL Circuit: Energy Transfer During Current Shutdown

Loop rule:
$$IR + L\frac{dI}{dt} = 0$$
 $(I > 0, \frac{dI}{dt} < 0)$

- $IV_L = LI \frac{dI}{dt}$: rate at which inductor releases energy
- $IV_R = I^2 R$: rate at which energy is dissipated in resistor

Balance of energy transfer: $I^2R + LI\frac{dI}{dt} = 0$

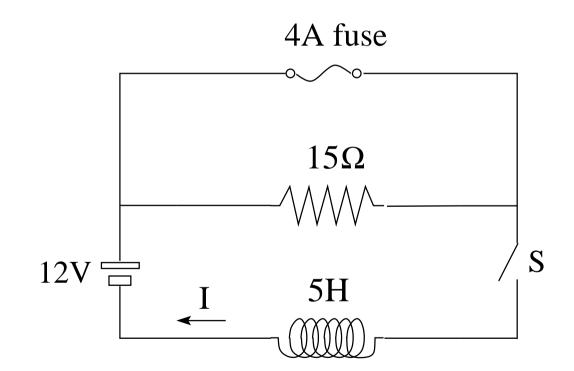


RL Circuit: Some Physical Properties

Specification of RL circuit by 3 device properties:

- *E* [V] (emf)
- R [Ω] (resistance)
- L [H] (inductance)

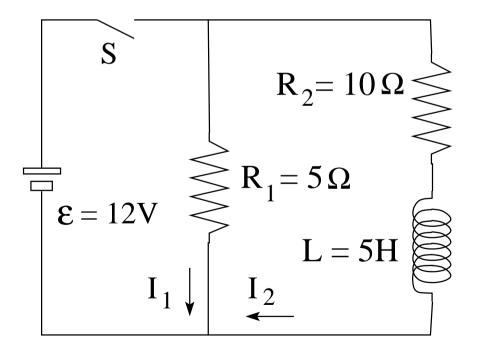
Physical properties of *RL* circuit during current buildup determined by 3 combinations of the device properties:


- $\frac{\mathcal{E}}{L} = \left. \frac{dI}{dt} \right|_{t=0}$: initial rate at which current increases
- $\frac{\mathcal{E}}{R} = I(t = \infty)$: final value of current
- $L/R = \tau$: time it takes to build up 63% of the current through the circuit $[1 e^{-1} = 0.632 \dots]$

RL Circuit: Application (7)

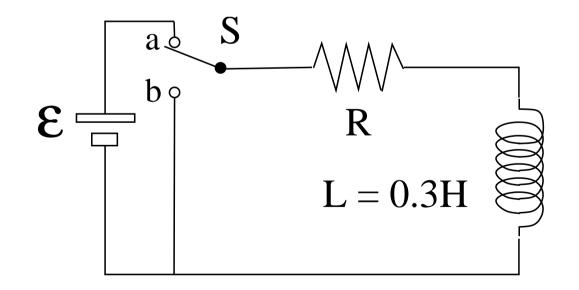
In the circuit shown the switch S is closed at time t = 0.

- (a) Find the current I as a function of time for $0 < t < t_F$, where t_F marks the instant the fuse breaks.
- (b) Find the current I as a function of time for $t > t_F$.



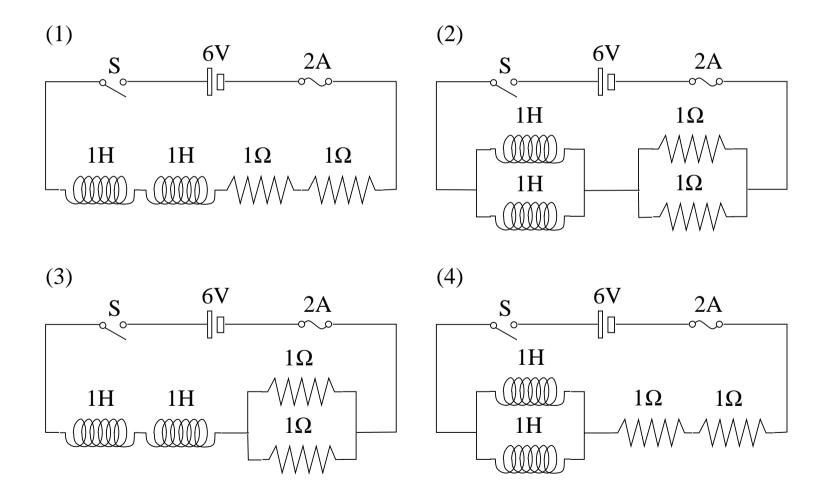
RL Circuit: Application (8)

In the circuit shown the switch has been open for a long time. Find the currents I_1 and I_2


- just after the switch has been closed,
- a long time later,
- as functions of time for $0 < t < \infty$.

In the *RL* circuit shown the switch has been at position *a* for a long time and is thrown to position *b* at time t = 0. At that instant the current has the value $I_0 = 0.7$ A and decreases at the rate dI/dt = -360A/s.

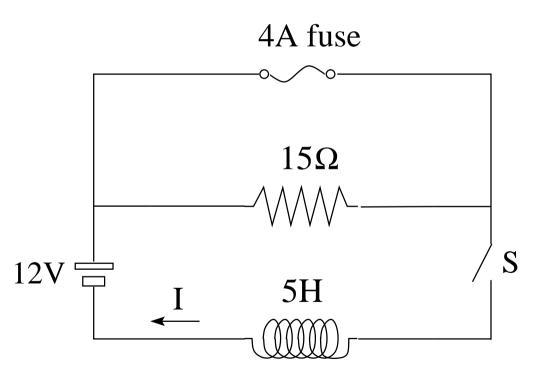
- (a) Find the EMF \mathcal{E} of the battery.
- (b) Find the resistance R of the resistor.
- (c) At what time t_1 has the current decreased to the value $I_1 = 0.2$ A?
- (d) Find the voltage across the inductor at time t_1 .



RL Circuit: Application (5)

Each RL circuit contains a 2A fuse. The switches are closed at t = 0.

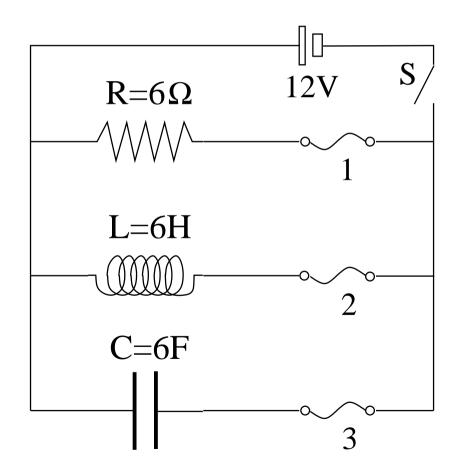
• In what sequence are the fuses blown?



RL Circuit: Application (3)

The switch is closed at t = 0. Find the current I

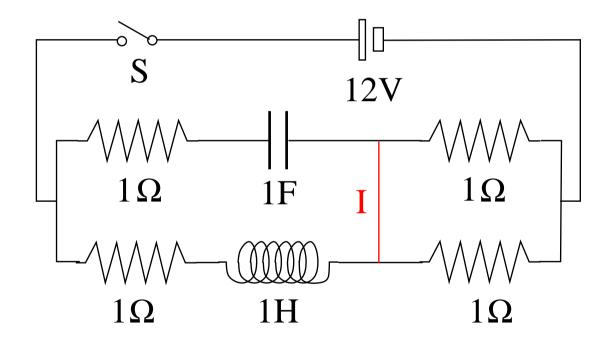
- (a) immediately after the switch has been closed,
- (b) immediately before the fuse breaks,
- (c) immediately after the fuse has broken,
- (d) a very long time later.



RL Circuit: Application (1)

Each branch in the circuit shown contains a 3A fuse. The switch is closed at time t = 0.

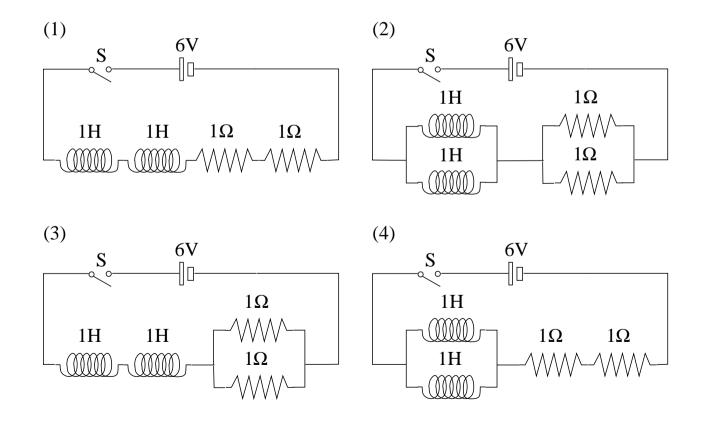
- (a) Which fuse is blown in the shortest time?
- (b) Which fuse lasts the longest time?



RL Circuit: Application (4)

Find the magnitude (in amps) and the direction (\uparrow,\downarrow) of the current *I*

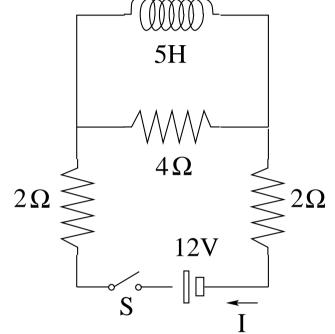
- (a) right after the switch has been closed,
- (b) a very long time later.



RL Circuit: Application (2)

The switch in each RL circuit is closed at t = 0. Rank the circuits according to three criteria:

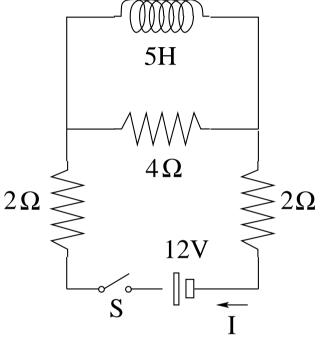
- (a) magnitude of current at t = 1 ms,
- (b) magnitude of current at $t = \infty$,
- (c) time it takes I to reach 63% of its ultimate value.



Intermediate Exam III: Problem #2 (Spring '05)

In the circuit shown we close the switch S at time t = 0. Find the current I through the battery and the voltage V_L across the inductor

- (a) immediately after the switch has been closed,
- (b) a very long time later.

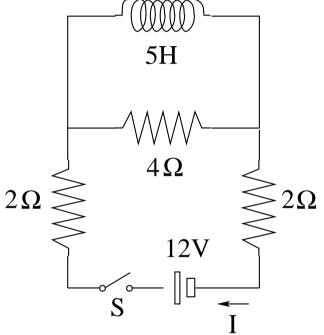


Intermediate Exam III: Problem #2 (Spring '05)

In the circuit shown we close the switch S at time t = 0. Find the current I through the battery and the voltage V_L across the inductor

- (a) immediately after the switch has been closed,
- (b) a very long time later.

Solution:


(a)
$$I = \frac{12V}{2\Omega + 4\Omega + 2\Omega} = 1.5A, \quad V_L = (4\Omega)(1.5A) = 6V.$$

Intermediate Exam III: Problem #2 (Spring '05)

In the circuit shown we close the switch S at time t = 0. Find the current I through the battery and the voltage V_L across the inductor

- (a) immediately after the switch has been closed,
- (b) a very long time later.

Solution:

(a)
$$I = \frac{12V}{2\Omega + 4\Omega + 2\Omega} = 1.5A, \quad V_L = (4\Omega)(1.5A) = 6V$$

(b) $I = \frac{12V}{2\Omega + 2\Omega} = 3A, \quad V_L = 0.$