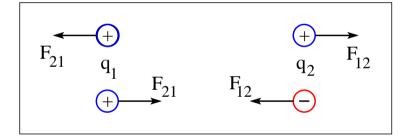
Electricity and Magnetism

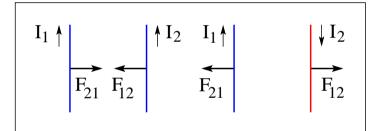
Electricity

- Electric charges generate an electric field.
- The electric field exerts a force on other electric charges.



Magnetism

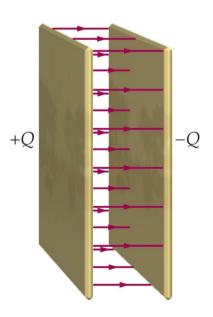
- Electric currents generate a magnetic field.
- The magnetic field exerts force on other electric currents.



Sources of Electric and Magnetic Fields

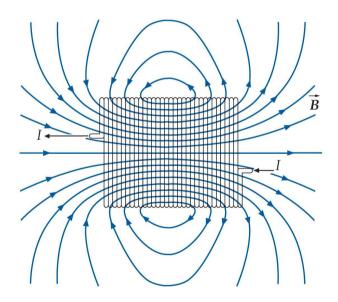
Capacitor

The parallel-plate capacitor generates a near uniform electric field provided the linear dimensions of the plates are large compared to the distance between them.



Solenoid

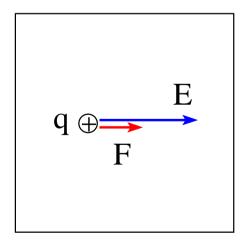
The solenoid (a tightly wound cylindrical coil) generates a near uniform magnetic field provided the length of the coil is large compared to its radius.



Electric and Magnetic Forces on Point Charge

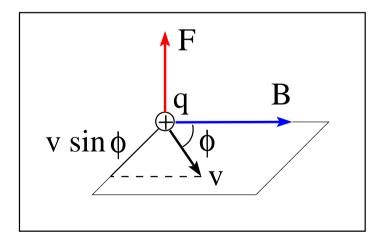
Electric Force

- $\bullet \quad \vec{F} = q\vec{E}$
- electric force is parallel to electric field
- SI unit of *E*: 1N/C=1V/m



Magnetic Force

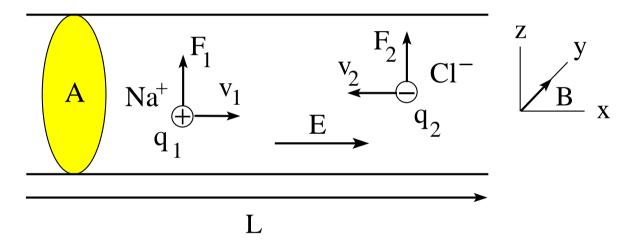
- $\vec{F} = q\vec{v} \times \vec{B}$, $F = qvB\sin\phi$
- magnetic force is perpendicular to magnetic field
- SI unit of B: 1Ns/Cm=1T (Tesla)
- 1T=10⁴G (Gauss)



Magnetic Force on Current-Carrying Conductor

Consider drift of Na⁺ and Cl⁻ ions in a plastic pipe filled with salt water.

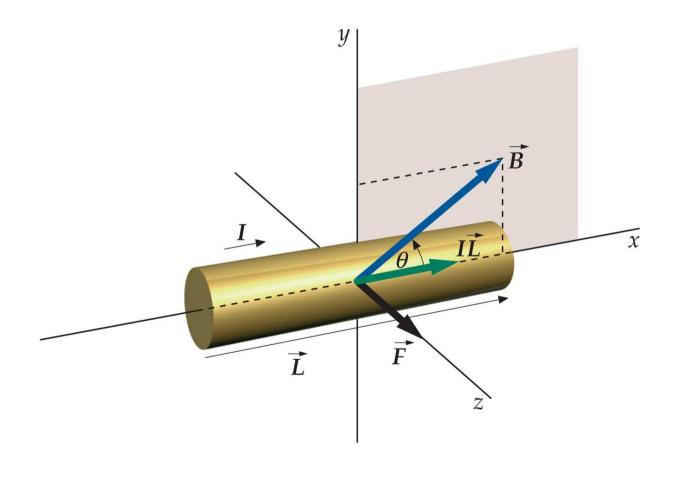
- $v_{1x} > 0$, $v_{2x} < 0$: drift velocities; $q_1 > 0$, $q_2 < 0$: charge on ions
- n_1 , n_2 : number of charge carriers per unit volume



- Electric current through A: $I = A(n_1q_1v_{1x} + n_2q_2v_{2x})$
- Force on Na⁺: $\vec{F}_1 = q_1 \vec{v}_1 \times \vec{B} \Rightarrow F_{1z} = q_1 v_{1x} B_y$
- Force on Cl⁻: $\vec{F}_2 = q_2 \vec{v}_2 \times \vec{B} \Rightarrow F_{2z} = q_2 v_{2x} B_y$
- Force on current-carrying pipe: $F_z = (n_1q_1v_{1x} + n_2q_2v_{2x})ALB_y = ILB_y$
- Vector relation: $\vec{F} = I\vec{L} \times \vec{B}$

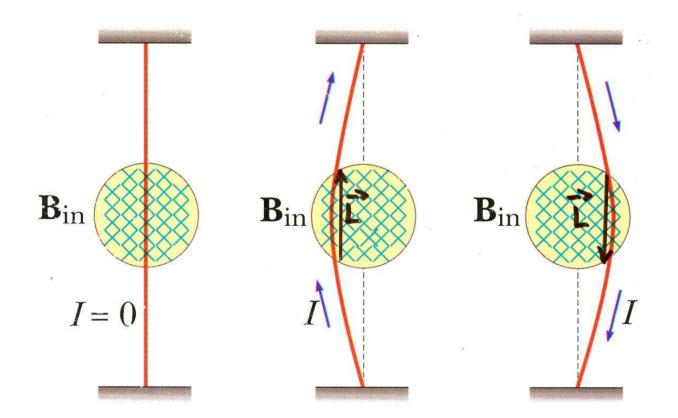
Direction of Magnetic Force

$$\vec{F} = I\vec{L} \times \vec{B}$$



Direction of Magnetic Force

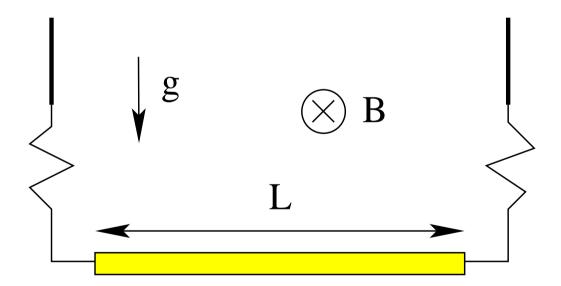
$$\vec{F} = I\vec{L} \times \vec{B}$$



Magnetic Force Application (1)

A wire of length $L=62\mathrm{cm}$ and mass $m=13\mathrm{g}$ is suspended by a pair of flexible leads in a uniform magnetic field $B=0.440\mathrm{T}$ pointing in to the plane.

 What are the magnitude and direction of the current required to remove the tension in the supporting leads?

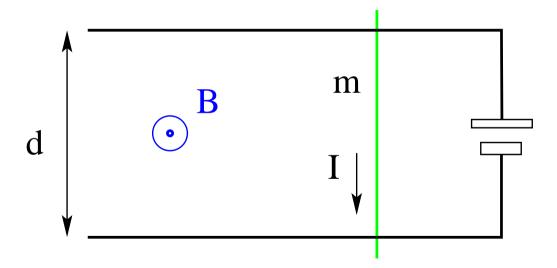


Magnetic Force Application (2)

A metal wire of mass $m=1.5{\rm kg}$ slides without friction on two horizontal rails spaced a distance $d=3{\rm m}$ apart.

The track lies in a vertical uniform magnetic field of magnitude $B=24 \mathrm{mT}$ pointing out of the plane. A constant current $I=12 \mathrm{A}$ flows from a battery along one rail, across the wire, and back down the other rail. The wire starts moving from rest at t=0.

• Find the direction and magnitude of the velocity of the wire at time t=5s.

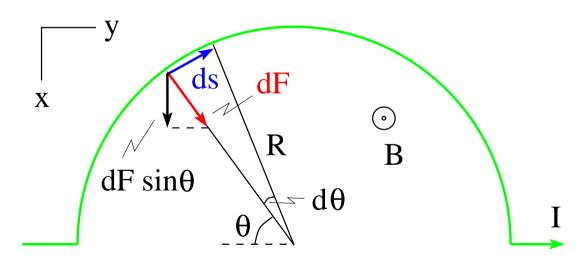


Magnetic Force on Semicircular Current (1)

Fancy solution:

- Uniform magnetic field \vec{B} points out of the plane.
- Magnetic force on segment ds: $dF = IBds = IBRd\theta$.
- Integrate $dF_x = dF \sin \theta$ and $dF_y = dF \cos \theta$ along semicircle.

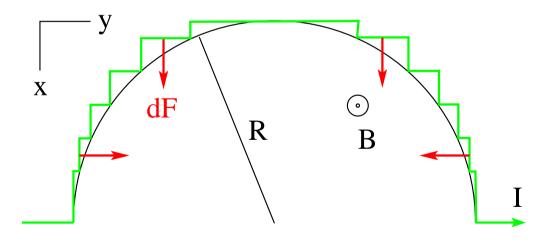
•
$$F_x = IBR \int_0^{\pi} \sin \theta d\theta = 2IBR$$
, $F_y = IBR \int_0^{\pi} \cos \theta d\theta = 0$.



Magnetic Force on Semicircular Current (2)

Clever solution:

- Replace the semicircle by symmetric staircase of tiny wire segments.
- Half the vertical segments experience a force to the left, the other half a force to the right.
 The resultant horizontal force is zero.
- All horizontal segments experience a downward force. The total length is 2R. The total downward force is 2IBR.
- Making the segments infinitesimally small does not change the result.

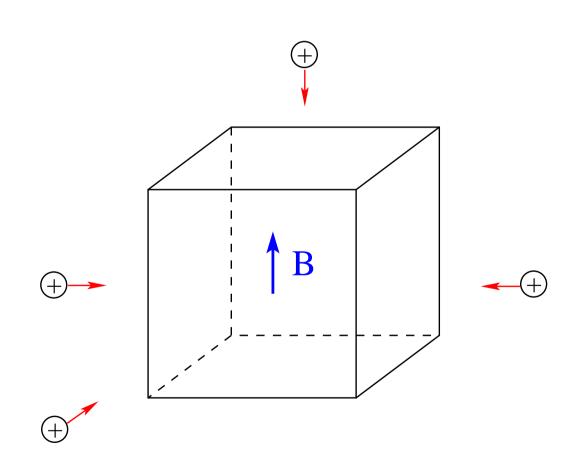


Magnetic Force Application (5)

Inside the cube there is a magnetic field \vec{B} directed vertically up.

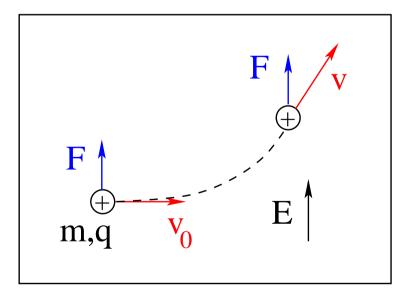
Find the direction of the magnetic force experienced by a proton entering the cube

- (a) from the left,
- (b) from the front,
- (c) from the right,
- (d) from the top.



Charged Particle Moving in Uniform Electric Field

- Electric field \vec{E} is directed up.
- Electric force: $\vec{F} = q\vec{E}$ (constant)
- Acceleration: $\vec{a} = \frac{\vec{F}}{m} = \frac{q}{m}\vec{E} = \text{const.}$
- Horizontal motion: $a_x = 0 \implies v_x(t) = v_0 \implies x(t) = v_0 t$
- Vertical motion: $a_y = \frac{q}{m}E \implies v_y(t) = a_y t \implies y(t) = \frac{1}{2}a_y t^2$
- The path is parabolic: $y = \left(\frac{qE}{2mv_0^2}\right)x^2$
- \vec{F} changes direction and magnitude of \vec{v} .

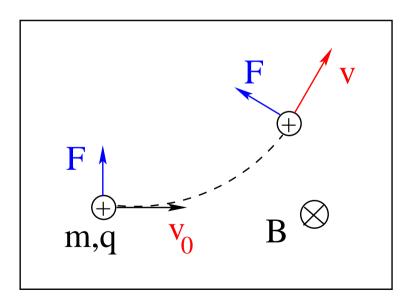


Charged Particle Moving in Uniform Magnetic Field

- Magnetic field \vec{B} is directed into plane.
- Magnetic force: $\vec{F} = q\vec{v} \times \vec{B}$ (not constant)
- $\vec{F} \perp \vec{v} \Rightarrow \vec{F}$ changes direction of \vec{v} only $\Rightarrow v = v_0$.
- \vec{F} is the centripetal force of motion along circular path.

• Radius:
$$\frac{mv^2}{r} = qvB \Rightarrow r = \frac{mv}{qB}$$

- Angular velocity: $\omega = \frac{v}{r} = \frac{qB}{m}$
- Period: $T = \frac{2\pi}{\omega} = \frac{2\pi m}{qB}$

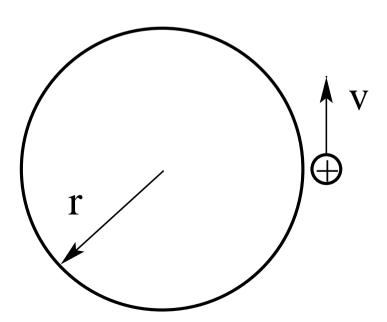


Charged Particle in Circular Motion

A proton with speed $v=3.00\times 10^5 \text{m/s}$ orbits just outside a charged conducting sphere of radius r=1.00 cm.

- (a) Find the force F acting on the proton.
- (b) Find the charge per unit area σ on the surface of the sphere.
- (c) Find the total charge Q on the sphere.

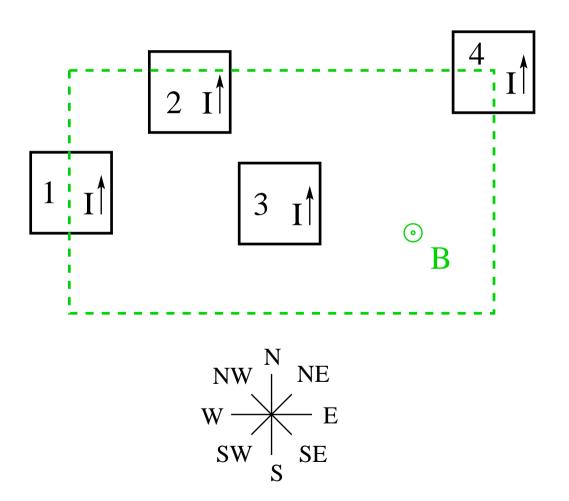
Note: Charged particles in circular motion lose energy through radiation. This effect is ignored here.



Magnetic Force Application (3)

The dashed rectangle marks a region of uniform magnetic field \vec{B} pointing out of the plane.

• Find the direction of the magnetic force acting on each loop with a ccw current *I*.



Velocity Selector

A charged particle is moving horizontally into a region with "crossed" uniform fields:

- an electric field \vec{E} pointing down,
- a magnetic field \vec{B} pointing into the plane.

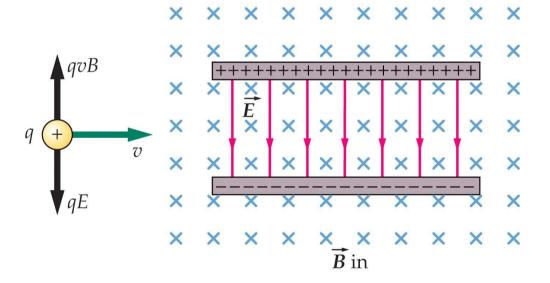
Forces experienced by particle:

- electric force F = qE pointing down,
- magnetic force B = qvB pointing up.

Forces in balance: qE = qvB.

Selected velocity: $v = \frac{E}{B}$.

Trajectories of particles with selected velocity are not bent.



Measurement of e/m for Electron

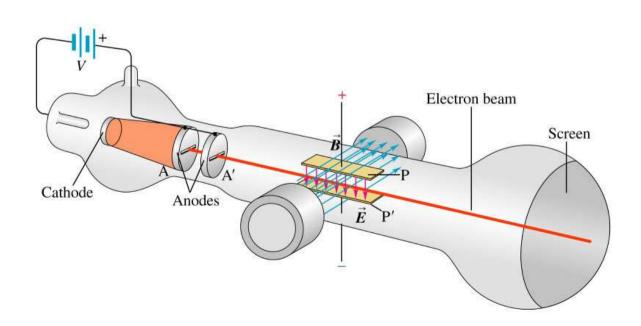
First experiment by J. J. Thomson (1897)

Method used here: velocity selector

Equilibrium of forces:
$$eE = evB \implies v = \frac{E}{B}$$

Work-energy relation:
$$eV = \frac{1}{2}mv^2 \implies v = \sqrt{\frac{2eV}{m}}$$

Eliminate
$$v$$
: $\frac{e}{m} = \frac{E^2}{2VB^2} \simeq 1.76 \times 10^{11} \mathrm{C/kg}$



Measurement of e and m for Electron

First experiment by R. Millikan (1913)

Method used here: balancing weight and electric force on oil drop

Radius of oil drop: $r = 1.64 \mu \mathrm{m}$

Mass density of oil: $\rho = 0.851 \mathrm{g/cm^3}$

Electric field: $E = 1.92 \times 10^5 \text{N/C}$

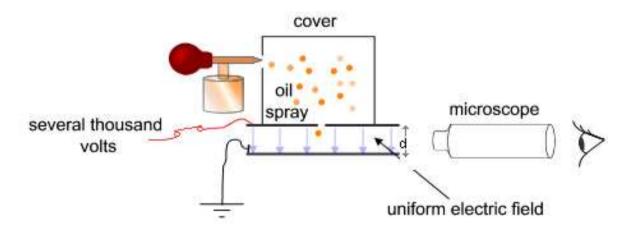
Mass of oil drop: $m=\frac{4\pi}{3}r^3\rho=1.57\times 10^{-14}{\rm kg}$

Equilibrium of forces: neE = mg

Number of excess elementary charges (integer): n=5

Elementary charge: $e = \frac{mg}{nE} \simeq 1.6 \times 10^{-19} \text{C}$

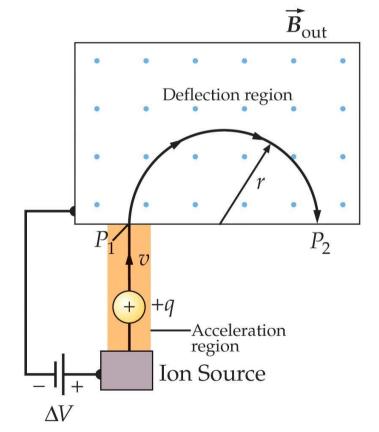
Mass of electron: $m \simeq 9.1 \times 10^{-31} \mathrm{kg}$



Mass Spectrometer

Purpose: measuring masses of ions.

- Charged particle is accelerated by moving through potential difference $|\Delta V|$.
- Trajectory is then bent into semicircle of radius r by magnetic field \vec{B} .
- Kinetic energy: $\frac{1}{2}mv^2 = q|\Delta V|$.
- Radius of trajectory: $r = \frac{mv}{qB}$.
- Charge: q = e
- $\bullet \ \ \text{Mass:} \ m = \frac{eB^2r^2}{2|\Delta V|}.$

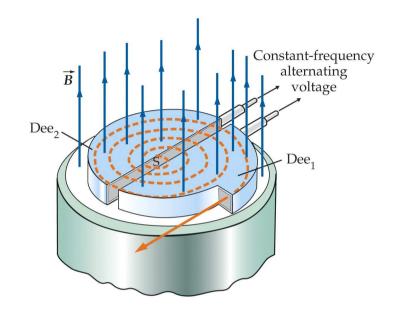


Cyclotron

Purpose: accelerate charged particles to high energy.

- Low-energy protons are injected at S.
- Path is bent by magnetic field \vec{B} .
- Proton is energized by alternating voltage ΔV between Dee_1 and Dee_2 .
- Proton picks up energy $\Delta K = e \Delta V$ during each half cycle.
- Path spirals out as velocity of particle increases: Radial distance is proportional to velocity: $r = \frac{mv}{eB}$.
- Duration of cycle stays is independent of r or v: cyclotron period: $T = \frac{2\pi m}{eB}$.

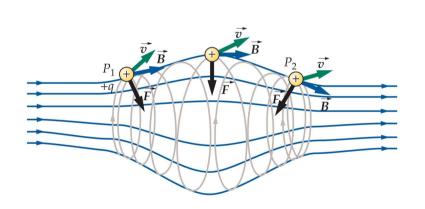
• High-energy protons exit at perimeter of \vec{B} -field region.

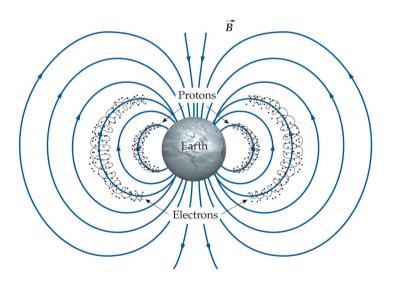


Magnetic Bottles

Moving charged particle confined by inhomogeneous magnetic field.

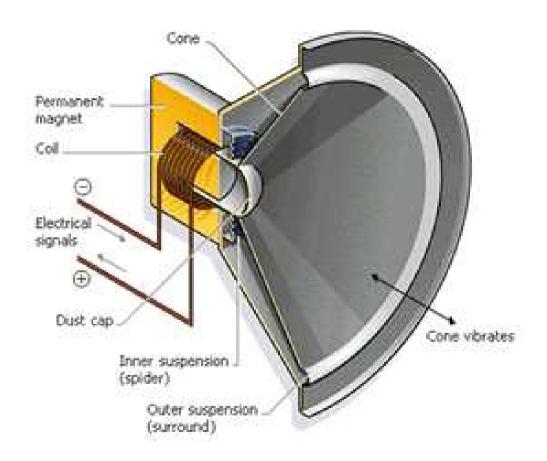
Van Allen belt: trapped protons and electrons in Earth's magnetic field.





Loudspeaker

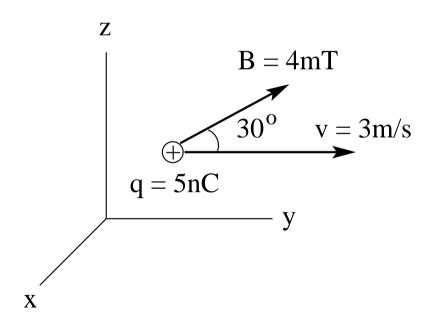
Conversion of electric signal into mechanical vibration.



Intermediate Exam II: Problem #4 (Spring '05)

Consider a charged particle moving in a uniform magnetic field as shown. The velocity is in y-direction and the magnetic field in the yz-plane at 30° from the y-direction.

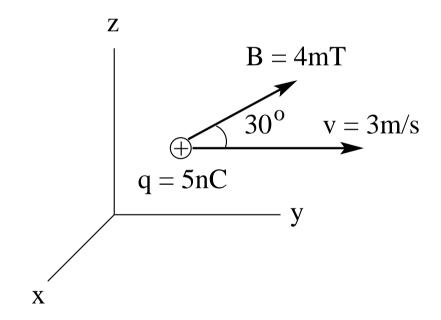
- (a) Find the direction of the magnetic force acting on the particle.
- (b) Find the magnitude of the magnetic force acting on the particle.



Intermediate Exam II: Problem #4 (Spring '05)

Consider a charged particle moving in a uniform magnetic field as shown. The velocity is in y-direction and the magnetic field in the yz-plane at 30° from the y-direction.

- (a) Find the direction of the magnetic force acting on the particle.
- (b) Find the magnitude of the magnetic force acting on the particle.



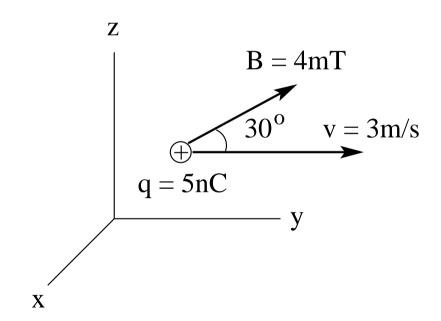
Solution:

(a) Use the right-hand rule: positive x-direction (front, out of page).

Intermediate Exam II: Problem #4 (Spring '05)

Consider a charged particle moving in a uniform magnetic field as shown. The velocity is in y-direction and the magnetic field in the yz-plane at 30° from the y-direction.

- (a) Find the direction of the magnetic force acting on the particle.
- (b) Find the magnitude of the magnetic force acting on the particle.

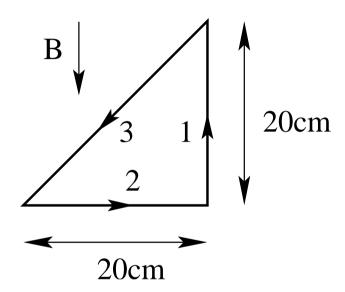


- (a) Use the right-hand rule: positive *x*-direction (front, out of page).
- (b) $F = qvB\sin 30^\circ = (5 \times 10^{-9} \text{C})(3\text{m/s})(4 \times 10^{-3} \text{T})(0.5) = 3 \times 10^{-11} \text{N}.$

Intermediate Exam II: Problem #4 (Spring '06)

A current loop in the form of a right triangle is placed in a uniform magnetic field of magnitude $B=30 \mathrm{mT}$ as shown. The current in the loop is $I=0.4 \mathrm{A}$ in the direction indicated.

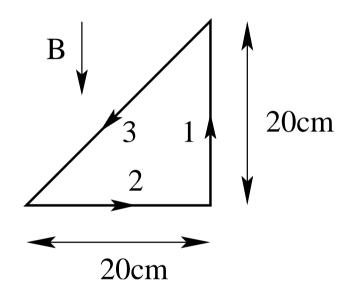
- (a) Find magnitude and direction of the force \vec{F}_1 on side 1 of the triangle.
- (b) Find magnitude and direction of the force \vec{F}_2 on side 2 of the triangle.



Intermediate Exam II: Problem #4 (Spring '06)

A current loop in the form of a right triangle is placed in a uniform magnetic field of magnitude $B=30 \mathrm{mT}$ as shown. The current in the loop is $I=0.4 \mathrm{A}$ in the direction indicated.

- (a) Find magnitude and direction of the force \vec{F}_1 on side 1 of the triangle.
- (b) Find magnitude and direction of the force \vec{F}_2 on side 2 of the triangle.



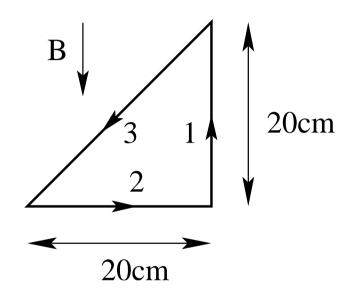
Solution:

(a) $\vec{F}_1 = I\vec{L} \times \vec{B} = 0$ (angle between \vec{L} and \vec{B} is 180°).

Intermediate Exam II: Problem #4 (Spring '06)

A current loop in the form of a right triangle is placed in a uniform magnetic field of magnitude $B=30 \mathrm{mT}$ as shown. The current in the loop is $I=0.4 \mathrm{A}$ in the direction indicated.

- (a) Find magnitude and direction of the force \vec{F}_1 on side 1 of the triangle.
- (b) Find magnitude and direction of the force \vec{F}_2 on side 2 of the triangle.

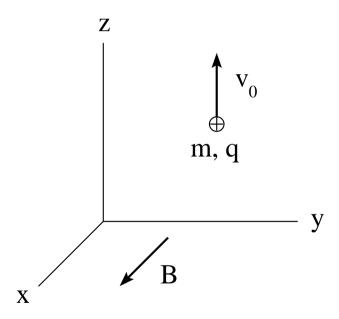


- (a) $\vec{F}_1 = I\vec{L} \times \vec{B} = 0$ (angle between \vec{L} and \vec{B} is 180°).
- (b) $F_2 = ILB = (0.4\text{A})(0.2\text{m})(30 \times 10^{-3}\text{T}) = 2.4 \times 10^{-3}\text{N}.$ Direction of \vec{F}_2 : \otimes (into plane).

In a region of uniform magnetic field $\mathbf{B} = 5 \mathrm{mT} \hat{\mathbf{i}}$, a proton

 $(m = 1.67 \times 10^{-27} \text{kg}, \ q = 1.60 \times 10^{-19} \text{C})$ is launched with velocity $\mathbf{v}_0 = 4000 \text{m/s} \hat{\mathbf{k}}$.

- (a) Calculate the magnitude F of the magnetic force that keeps the proton on a circular path.
- (b) Calculate the radius r of the circular path.
- (c) Calculate the time T it takes the proton to go around that circle once.
- (d) Sketch the circular path of the proton in the graph.

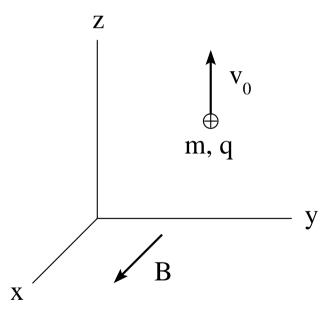


In a region of uniform magnetic field $\mathbf{B} = 5 \mathrm{mT} \hat{\mathbf{i}}$, a proton

 $(m = 1.67 \times 10^{-27} \text{kg}, \ q = 1.60 \times 10^{-19} \text{C})$ is launched with velocity $\mathbf{v}_0 = 4000 \text{m/s} \hat{\mathbf{k}}$.

- (a) Calculate the magnitude F of the magnetic force that keeps the proton on a circular path.
- (b) Calculate the radius r of the circular path.
- (c) Calculate the time T it takes the proton to go around that circle once.
- (d) Sketch the circular path of the proton in the graph.

(a)
$$F = qv_0B = 3.2 \times 10^{-18}$$
 N.



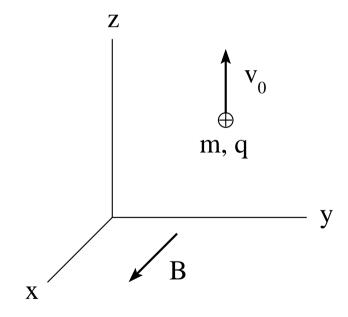
In a region of uniform magnetic field $\mathbf{B} = 5 \mathrm{mT} \hat{\mathbf{i}}$, a proton

 $(m = 1.67 \times 10^{-27} \text{kg}, \ q = 1.60 \times 10^{-19} \text{C})$ is launched with velocity $\mathbf{v}_0 = 4000 \text{m/s} \hat{\mathbf{k}}$.

- (a) Calculate the magnitude F of the magnetic force that keeps the proton on a circular path.
- (b) Calculate the radius r of the circular path.
- (c) Calculate the time T it takes the proton to go around that circle once.
- (d) Sketch the circular path of the proton in the graph.

(a)
$$F = qv_0B = 3.2 \times 10^{-18}$$
 N.

(b)
$$\frac{mv_0^2}{r} = qv_0B \implies r = \frac{mv_0}{qB} = 8.35 \text{mm}.$$



In a region of uniform magnetic field $\mathbf{B} = 5 \mathrm{mT} \hat{\mathbf{i}}$, a proton

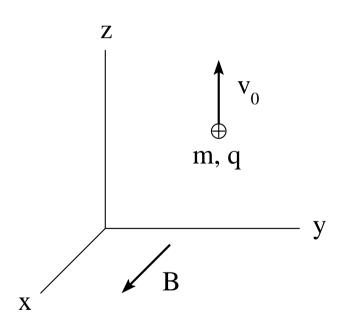
 $(m = 1.67 \times 10^{-27} \text{kg}, \ q = 1.60 \times 10^{-19} \text{C})$ is launched with velocity $\mathbf{v}_0 = 4000 \text{m/s} \hat{\mathbf{k}}$.

- (a) Calculate the magnitude F of the magnetic force that keeps the proton on a circular path.
- (b) Calculate the radius r of the circular path.
- (c) Calculate the time T it takes the proton to go around that circle once.
- (d) Sketch the circular path of the proton in the graph.

(a)
$$F = qv_0B = 3.2 \times 10^{-18} \text{N}.$$

(b)
$$\frac{mv_0^2}{r} = qv_0B \implies r = \frac{mv_0}{qB} = 8.35$$
mm.

(c)
$$T = \frac{2\pi r}{v_0} = \frac{2\pi m}{qB} = 13.1 \mu s.$$



In a region of uniform magnetic field $\mathbf{B} = 5 \mathrm{mT} \hat{\mathbf{i}}$, a proton

 $(m = 1.67 \times 10^{-27} \text{kg}, \ q = 1.60 \times 10^{-19} \text{C})$ is launched with velocity $\mathbf{v}_0 = 4000 \text{m/s} \hat{\mathbf{k}}$.

- (a) Calculate the magnitude F of the magnetic force that keeps the proton on a circular path.
- (b) Calculate the radius r of the circular path.
- (c) Calculate the time T it takes the proton to go around that circle once.
- (d) Sketch the circular path of the proton in the graph.

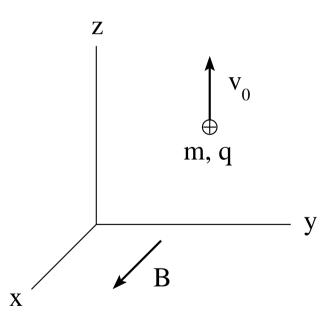
Solution:

(a)
$$F = qv_0B = 3.2 \times 10^{-18}$$
 N.

(b)
$$\frac{mv_0^2}{r} = qv_0B \implies r = \frac{mv_0}{qB} = 8.35$$
mm.

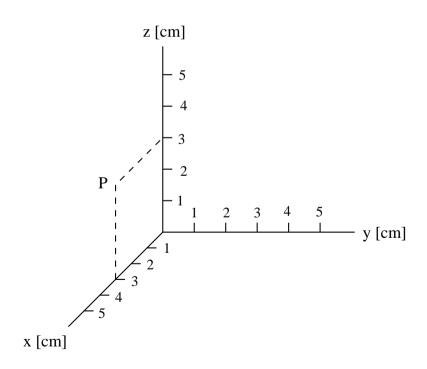
(c)
$$T = \frac{2\pi r}{v_0} = \frac{2\pi m}{qB} = 13.1 \mu s.$$

(d) Center of circle to the right of proton's initial position (cw motion).



In a region of uniform magnetic field ${\bf B}$ a proton $(m=1.67\times 10^{-27}{\rm kg},\ q=1.60\times 10^{-19}{\rm C})$ experiences a force ${\bf F}=8.0\times 10^{-19}{\rm N}\,\hat{\bf i}$ as it passes through point P with velocity ${\bf v}_0=2000{\rm m/s}\,\hat{\bf k}$ on a circular path.

- (a) Find the magnetic field B (magnitude and direction).
- (b) Calculate the radius r of the circular path.
- (c) Locate the center C of the circular path in the coordinate system on the page.

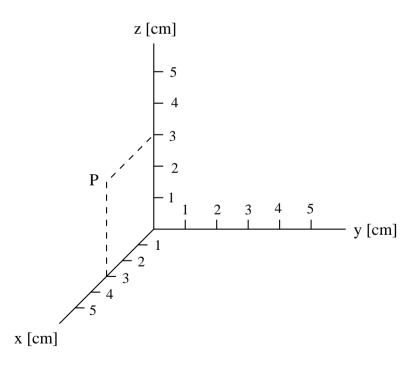


In a region of uniform magnetic field ${\bf B}$ a proton $(m=1.67\times 10^{-27}{\rm kg},\ q=1.60\times 10^{-19}{\rm C})$ experiences a force ${\bf F}=8.0\times 10^{-19}{\rm N}\,\hat{\bf i}$ as it passes through point P with velocity ${\bf v}_0=2000{\rm m/s}\,\hat{\bf k}$ on a circular path.

- (a) Find the magnetic field B (magnitude and direction).
- (b) Calculate the radius r of the circular path.
- (c) Locate the center C of the circular path in the coordinate system on the page.

(a)
$$B = \frac{F}{qv_0} = 2.50 \times 10^{-3} \text{T}, \quad \hat{\mathbf{i}} = \hat{\mathbf{k}} \times (-\hat{\mathbf{j}})$$

 $\Rightarrow \mathbf{B} = -2.50 \times 10^{-3} \text{T} \hat{\mathbf{j}}.$



In a region of uniform magnetic field ${\bf B}$ a proton $(m=1.67\times 10^{-27}{\rm kg},\ q=1.60\times 10^{-19}{\rm C})$ experiences a force ${\bf F}=8.0\times 10^{-19}{\rm N}\,\hat{\bf i}$ as it passes through point P with velocity ${\bf v}_0=2000{\rm m/s}\,\hat{\bf k}$ on a circular path.

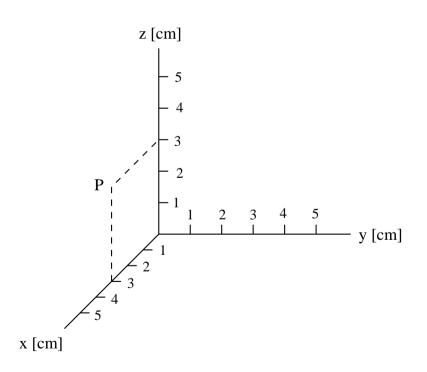
- (a) Find the magnetic field B (magnitude and direction).
- (b) Calculate the radius r of the circular path.
- (c) Locate the center C of the circular path in the coordinate system on the page.

(a)
$$B = \frac{F}{qv_0} = 2.50 \times 10^{-3} \text{T}, \quad \hat{\mathbf{i}} = \hat{\mathbf{k}} \times (-\hat{\mathbf{j}})$$

 $\Rightarrow \mathbf{B} = -2.50 \times 10^{-3} \text{T} \hat{\mathbf{j}}.$

(b)
$$F = \frac{mv_0^2}{r} = qv_0B$$

 $\Rightarrow r = \frac{mv_0^2}{F} = \frac{mv_0}{qB} = 0.835 \text{cm}.$



In a region of uniform magnetic field ${\bf B}$ a proton $(m=1.67\times 10^{-27}{\rm kg},\ q=1.60\times 10^{-19}{\rm C})$ experiences a force ${\bf F}=8.0\times 10^{-19}{\rm N}\,\hat{\bf i}$ as it passes through point P with velocity ${\bf v}_0=2000{\rm m/s}\,\hat{\bf k}$ on a circular path.

- (a) Find the magnetic field B (magnitude and direction).
- (b) Calculate the radius r of the circular path.
- (c) Locate the center C of the circular path in the coordinate system on the page.

(a)
$$B = \frac{F}{qv_0} = 2.50 \times 10^{-3} \text{T}, \quad \hat{\mathbf{i}} = \hat{\mathbf{k}} \times (-\hat{\mathbf{j}})$$

 $\Rightarrow \mathbf{B} = -2.50 \times 10^{-3} \text{T} \hat{\mathbf{j}}.$

(b)
$$F = \frac{mv_0^2}{r} = qv_0B$$

 $\Rightarrow r = \frac{mv_0^2}{F} = \frac{mv_0}{qB} = 0.835 \text{cm}.$

(c)
$$C = 3.84 \text{cm} \,\hat{\mathbf{i}} + 3.00 \text{cm} \,\hat{\mathbf{k}}$$
.

