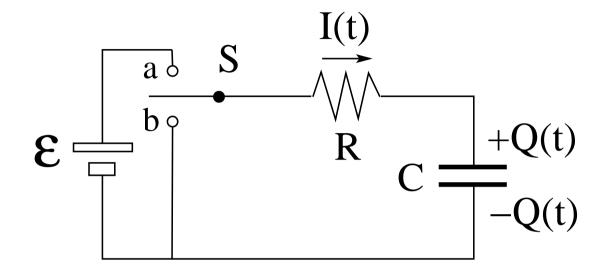
RC Circuit: Fundamentals

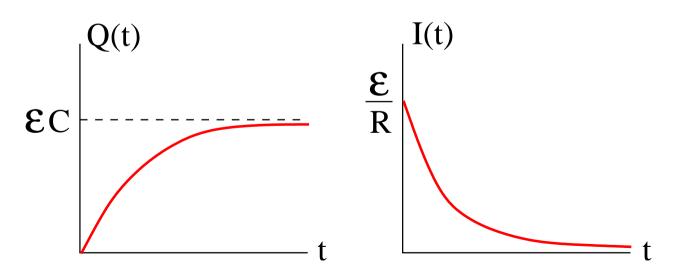


Specifications:

- \mathcal{E} (emf)
- R (resistance)
- C (capacitance)

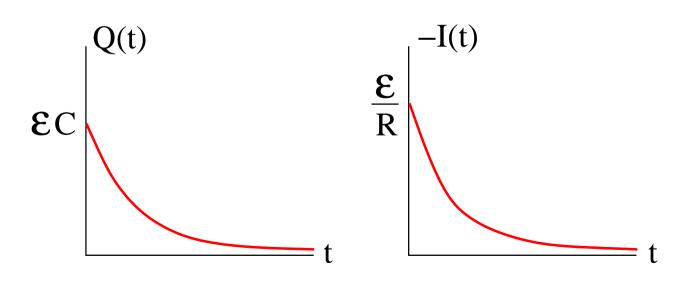
Switch S:

- a: charging
- b: discharging


Time-dependent quantities:

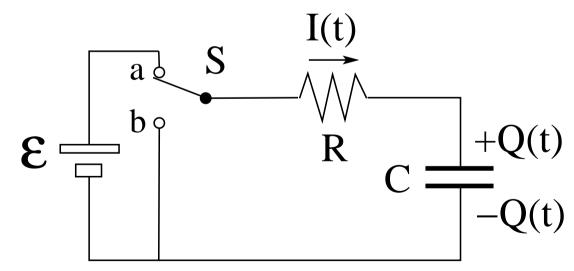
- Q(t): instantaneous charge on capacitor
- $I(t) = \frac{dQ}{dt}$: instantaneous current
- $V_R(t) = I(t)R$: instantaneous voltage across resistor
- $V_C(t) = \frac{Q(t)}{C}$: instantaneous voltage across capacitor

RC Circuit: Charging the Capacitor


- Loop rule: $\mathcal{E} IR \frac{Q}{C} = 0$
- Differential equation: $R \frac{dQ}{dt} + \frac{Q}{C} = \mathcal{E} \quad \Rightarrow \frac{dQ}{dt} = \frac{\mathcal{E}C Q}{RC}$ $\int_0^Q \frac{dQ}{\mathcal{E}C Q} = \int_0^t \frac{dt}{RC} \quad \Rightarrow \quad -\ln\left(\frac{\mathcal{E}C Q}{\mathcal{E}C}\right) = \frac{t}{RC} \quad \Rightarrow \quad \frac{\mathcal{E}C Q}{\mathcal{E}C} = e^{-t/RC}$
- Charge on capacitor: $Q(t) = \mathcal{E}C \left[1 e^{-t/RC}\right]$
- Current through resistor: $I(t) \equiv \frac{dQ}{dt} = \frac{\mathcal{E}}{R} \; e^{-t/RC}$

RC Circuit: Discharging the Capacitor

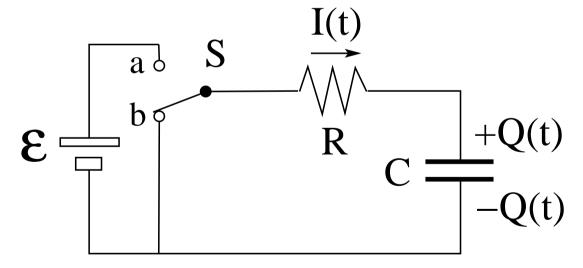
- Loop rule: $IR + \frac{Q}{C} = 0$
- Differential equation: $R \frac{dQ}{dt} + \frac{Q}{C} = 0 \implies \frac{dQ}{dt} = -\frac{Q}{RC}$ $\Rightarrow \int_{\mathcal{E}C}^{Q} \frac{dQ}{Q} = -\int_{0}^{t} \frac{dt}{RC} \implies \ln\left(\frac{Q}{\mathcal{E}C}\right) = -\frac{t}{RC} \implies \frac{Q}{\mathcal{E}C} = e^{-t/RC}$
- Charge on capacitor: $Q(t) = \mathcal{E}Ce^{-t/RC}$
- Current through resistor: $I(t) \equiv \frac{dQ}{dt} = -\frac{\mathcal{E}}{R} \; e^{-t/RC}$


RC Circuit: Energy Transfer While Charging

Loop rule:
$$IR + \frac{Q}{C} = \mathcal{E}$$
 (*I* is positive)

- *IE*: rate at which emf source delivers energy
- $IV_R = I^2R$: rate at which energy is dissipated in resistor
- $IV_C = \frac{IQ}{C}$: rate at which energy is stored in capacitor

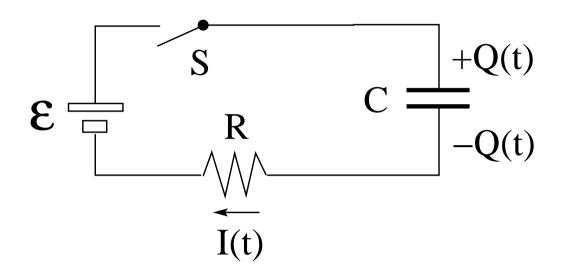
Balance of energy transfer:
$$I^2R + \frac{IQ}{C} = I\mathcal{E}$$


RC Circuit: Energy Transfer While Discharging

Loop rule: $IR + \frac{Q}{C} = 0$ (*I* is negative)

- $IV_R = I^2 R$: rate at which energy is dissipated in resistor
- $IV_C = \frac{IQ}{C}$: rate at which capacitor releases energy

Balance of energy transfer: $I^2R + \frac{IQ}{C} = 0$

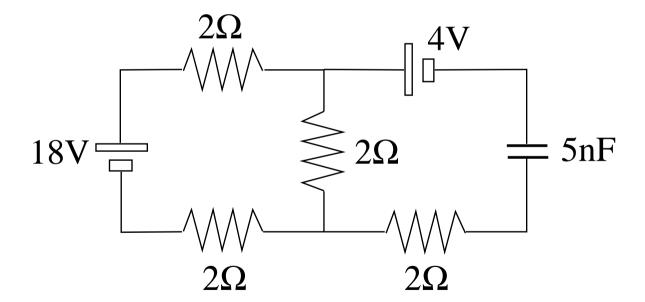


RC Circuit: Some Physical Properties

Specification of RC circuit by 3 device properties:

- \mathcal{E} [V] (emf)
- R $[\Omega]$ (resistance)
- C [F] (capacitance)

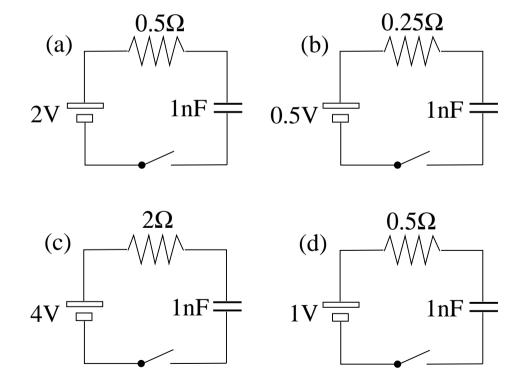
Physical properties of RC circuit during charging process determined by 3 combinations of the device properties:


- $\mathcal{E}/R = I(t=0)$: rate at which current flows onto capacitor initially
- $\mathcal{E}C = Q(t = \infty)$: total charge placed on capacitor ultimately
- $RC = \tau$: time it takes to place 63% of the charge onto the capacitor $[1 e^{-1} = 0.632\ldots]$

RC Circuit: Application (1)

This circuit has been running for a very long time.

- (a) Find the current through the 18V battery.
- (b) Find the total power dissipated in the resistors.
- (c) Find the charge stored on the capacitor.

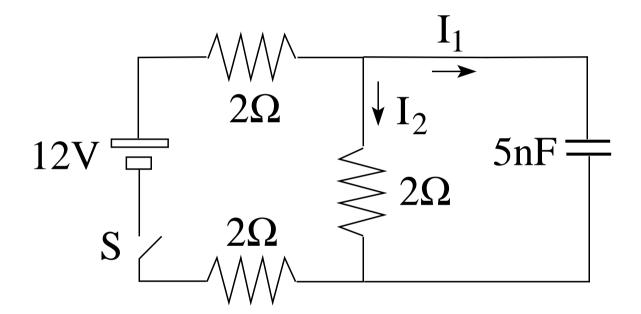

RC Circuit: Application (2)

The switches are closed at t = 0. This begins the charging process in each RC circuit.

Name the circuit in which...

- (i) the charge flows into the capacitor at the highest rate initially,
- (ii) the capacitor has the most charge ultimately,
- (iii) the capacitor is 63% full in the shortest time.

RC Circuit: Application (3)

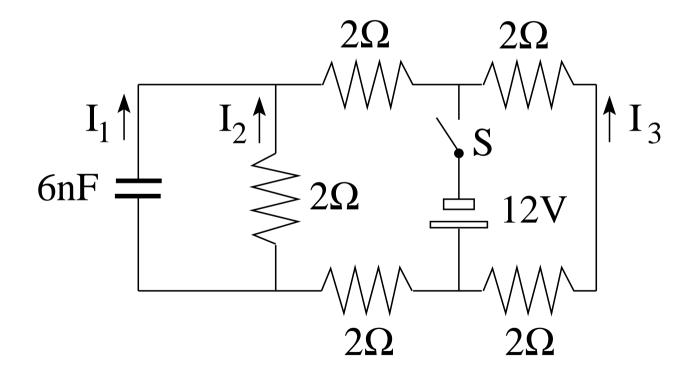

At time t = 0 the capacitor in this circuit is discharged and the switch is being closed.

Find the current I_1

- (a) at t = 0,
- (b) at $t = \infty$.

Find the current I_2

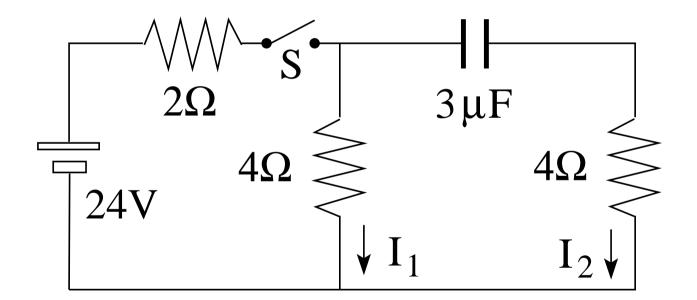
- (c) at t = 0,
- (d) at $t = \infty$.



RC Circuit: Application (4)

In this 3-loop RC circuit, the switch S is closed at time t=0.

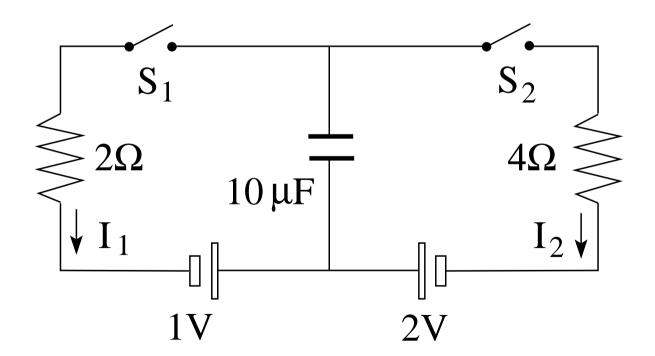
- (a) Find the currents I_1, I_2, I_3 just after the switch has been closed.
- (b) Find the currents I_1, I_2, I_3 a very long time later.



RC Circuit: Application (5)

In the RC circuit shown, the switch S has been open for a long time.

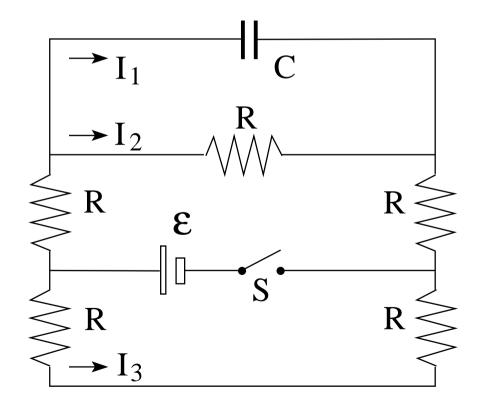
- (a) Find the currents I_1 and I_2 immediately after the switch has been closed.
- (b) Find the currents I_1 and I_2 a very long time later.



RC Circuit: Application (6)

In the RC circuit shown, both switches are initially open and the capacitor is discharged.

- (a) Close switch S_1 and find the currents I_1 and I_2 immediately afterwards.
- (b) Find the currents I_1I_2 and the charge Q on the capacitor a very long time later.
- (c) Now close switch S_2 also and find the currents I_1 and I_2 immediately afterwards.
- (d) Find the currents I_1, I_2 and the charge Q on the capacitor a very long time later.


RC Circuit: Application (7)

In the RC circuit shown, the switch has been open for a long time.

Find the currents I_1, I_2, I_3 and the charge Q on the capacitor

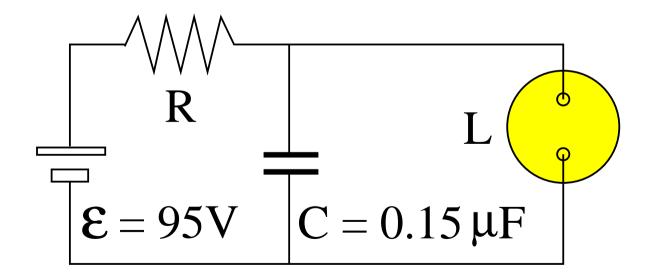
- (a) right after the switch has been closed,
- (b) a very long time later.

$$R = 2\Omega$$

$$C = 6\mu F$$

$$\varepsilon = 12V$$

RC Circuit: Application (8)

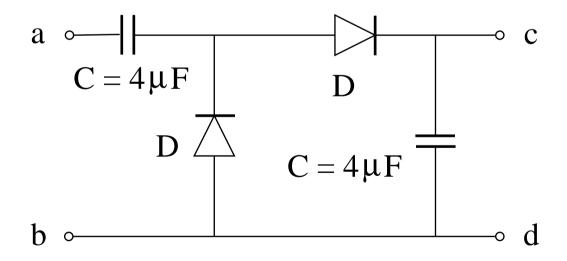


The circuit shown is that of a flashing lamp, such as are attached to barrels at highway construction sites.

The power is supplied by a battery with $\mathcal{E}=95V$. The fluorescent lamp L is connected in parallel to the capacitor with $C=0.15\mu F$ of an RC circuit.

Current passes through the lamp only when the potential difference across it reaches the breakdown voltage $V_L=72V$. In this event, the capacitor discharges through the lamp, and the lamp flashes briefly.

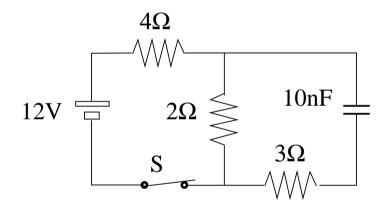
Suppose that two flashes per second are needed. What should the resistance R be?

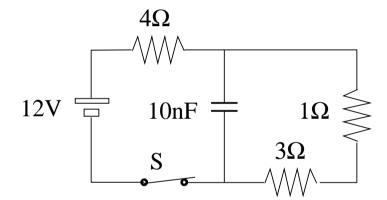

Circuit of Capacitors and Diodes

The circuit shown contains two identical capacitors and two ideal diodes. A 100V battery is connected to the two input terminals a and b. Find the voltage at the output terminals c and d

- (1) if a is the positive input terminal,
- (2) if *b* is the positive input terminal.

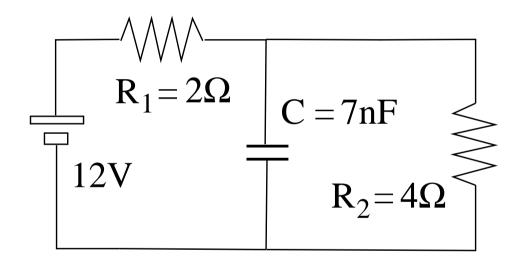
Note: An ideal diode is a perfect one-way street for electric currents. It lets a current through unimpeded in the direction of the arrow and totally blocks any current in the oppositie direction.




Unit Exam II: Problem #3 (Spring '13)

Consider the RC circuit shown. The switch has been closed for a long time.

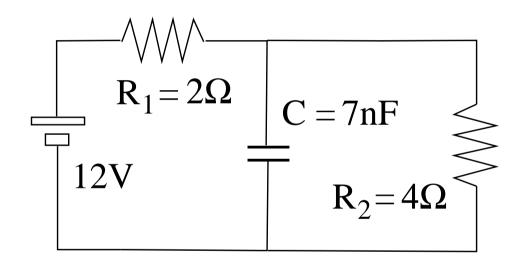
- (a) Find the current I_B flowing through the battery.
- (b) Find the voltage V_C across the capacitor.
- (c) Find the charge Q on the capacitor.
- (d) Find the current I_3 flowing through the 3Ω -resistor right after the switch has been opened.



Intermediate Exam II: Problem #3 (Spring '05)

This RC circuit has been running for a long time.

- (a) Find the current I_2 through the resistor R_2 .
- (b) Find the voltage V_C across the capacitor.

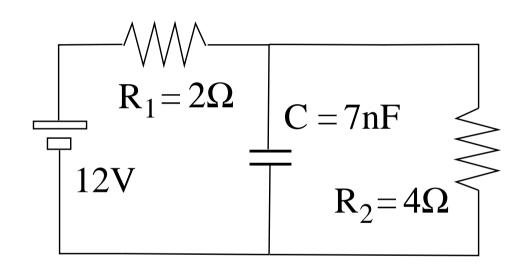


Intermediate Exam II: Problem #3 (Spring '05)

This RC circuit has been running for a long time.

- (a) Find the current I_2 through the resistor R_2 .
- (b) Find the voltage V_C across the capacitor.

Solution:


(a)
$$I_C = 0$$
, $I_2 = \frac{\mathcal{E}}{R_1 + R_2} = \frac{12V}{6\Omega} = 2A$.

Intermediate Exam II: Problem #3 (Spring '05)

This RC circuit has been running for a long time.

- (a) Find the current I_2 through the resistor R_2 .
- (b) Find the voltage V_C across the capacitor.

Solution:

(a)
$$I_C = 0$$
, $I_2 = \frac{\mathcal{E}}{R_1 + R_2} = \frac{12V}{6\Omega} = 2A$.

(b)
$$V_C = V_2 = I_2 R_2 = (2A)(4\Omega) = 8V.$$