M. C. Escher: Waterfall

Direct Current Circuit

Consider a wire with resistance $R = \rho \ell / A$ connected to a battery.

- Resistor rule: In the direction of *I* across a resistor with resistance *R*, the electric potential drops: $\Delta V = -IR$.
- EMF rule: From the (-) terminal to the (+) terminal in an ideal source of emf, the potential rises: $\Delta V = \mathcal{E}$.
- Loop rule: The algebraic sum of the changes in potential encountered in a complete traversal of any loop in a circuit must be zero: $\sum \Delta V_i = 0$.

Battery with Internal Resistance

- Real batteries have an internal resistance r.
- The terminal voltage $V_{ba} \equiv V_a V_b$ is smaller than the emf \mathcal{E} written on the label if a current flows through the battery.
- Usage of the battery increases its internal resistance.
- Current from loop rule: $\mathcal{E} Ir IR = 0 \implies I = \frac{\mathcal{E}}{R+r}$
- Current from terminal voltage: $V_{ba} = \mathcal{E} Ir = IR \implies I = \frac{V_{ba}}{R}$

Resistor Circuit (4)

Consider the resistor circuit shown.

- (a) Find the direction of the current I (cw/ccw).
- (b) Find the magnitude of the current *I*.
- (c) Find the voltage $V_{ab} = V_b V_a$.
- (d) Find the voltage $V_{cd} = V_d V_c$.

Consider the resistor circuit shown.

- (a) Find the direction (cw/ccw) of the current I in the loop.
- (b) Find the magnitude of the current *I* in the loop.
- (c) Find the potential difference $V_{ab} = V_b V_a$.
- (d) Find the voltage $V_{cd} = V_d V_c$.

Resistor Circuit (6)

Consider the resistor circuit shown.

- (a) Guess the current direction (cw/ccw).
- (b) Use the loop rule to determine the current.
- (c) Find $V_{ab} \equiv V_b V_a$ along two different paths.

Find the equivalent resistance of two resistors connected in parallel.

- Current through resistors: $I_1 + I_2 = I$
- Voltage across resistors: $V_1 = V_2 = V$
- Equivalent resistance: $\frac{1}{R} \equiv \frac{I}{V} = \frac{I_1}{V_1} + \frac{I_2}{V_2}$
- $\Rightarrow \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$

Find the equivalent resistance of two resistors connected in series.

- Current through resistors: $I_1 = I_2 = I$
- Voltage across resistors: $V_1 + V_2 = V$
- Equivalent resistance: $R \equiv \frac{V}{I} = \frac{V_1}{I_1} + \frac{V_2}{I_2}$
- \Rightarrow $R = R_1 + R_2$

Resistor Circuit (1)

Consider the two resistor circuits shown.

- (a) Find the resistance R_1 .
- (b) Find the emf \mathcal{E}_1 .
- (c) Find the resistance R_2 .
- (d) Find the emf \mathcal{E}_2 .

Resistor Circuit (2)

Consider the two resistor circuits shown.

- (a) Find the resistance R_1 .
- (b) Find the current I_1 .
- (c) Find the resistance R_2 .
- (d) Find the current I_2 .

Resistor Circuit (3)

<u>111</u>

Consider the rsistor and capacitor circuits shown.

- (a) Find the equivalent resistance R_{eq} .
- (b) Find the power P_2, P_3, P_4 dissipated in each resistor.
- (c) Find the equivalent capacitance C_{eq} .
- (d) Find the energy U_2, U_3, U_4 stored in each capacitor.

Power in Resistor Circuit

Battery in use

- Terminal voltage: $V_{ab} = \mathcal{E} Ir = IR$
- Power output of battery: $P = V_{ab}I = \mathcal{E}I I^2r$
 - Power generated in battery: $\mathcal{E}I$
 - Power dissipated in battery: I^2r
- Power dissipated in resistor: $P = I^2 R$

Battery being charged:

- Terminal voltage: $V_{ab} = \mathcal{E} + Ir$
- Power supplied by charging device: $P = V_{ab}I$
- Power input into battery: $P = \mathcal{E}I + I^2 r$
 - $\circ~$ Power stored in battery: ${\cal E} I$
 - Power dissipated in battery: I^2r

Resistor Circuit (7)

Consider two 24V batteries with internal resistances (a) $r = 4\Omega$, (b) $r = 2\Omega$.

• Which setting of the switch (L/R) produces the larger power dissipation in the resistor on the side?

Impedance Matching

A battery providing an emf \mathcal{E} with internal resistance r is connected to an external resistor of resistance R as shown.

For what value of R does the battery deliver the maximum power to the external resistor?

- Electric current: $\mathcal{E} Ir IR = 0 \implies I = \frac{\mathcal{E}}{R+r}$
- Power delivered to external resistor: $P = I^2 R = \frac{\mathcal{E}^2 R}{(R+r)^2}$
- Condition for maximum power: $\frac{dP}{dR} = 0 \implies R = r$

3 R/r

Resistor Circuit (8)

Consider the circuit of resistors shown.

- Find the equivalent resistance R_{eq} .
- Find the currents I_1, \ldots, I_5 through each resistor and the voltages V_1, \ldots, V_5 across each resistor.
- Find the total power *P* dissipated in the circuit.

Kirchhoff's Rules

Loop Rule

• When any closed-circuit loop is traversed, the algebraic sum of the changes in electric potential must be zero.

Junction Rule

• At any junction in a circuit, the sum of the incoming currents must equal the sum of the outgoing currents.

Strategy

- Use the junction rule to name all independent currents.
- Use the loop rule to determine the independent currents.

Applying the Junction Rule

In the circuit of steady currents, use the junction rule to find the unknown currents I_1, \ldots, I_6 .

Consider the circuit shown below.

- Junction *a*: I_1, I_2 (in); $I_1 + I_2$ (out)
- Junction *b*: $I_1 + I_2$ (in); I_1, I_2 (out)
- Two independent currents require the use of two loops.
- Loop A (ccw): $6V (2\Omega)I_1 2V (2\Omega)I_1 = 0$
- Loop B (ccw): $(3\Omega)I_2 + 1V + (2\Omega)I_2 6V = 0$
- Solution: $I_1 = 1A$, $I_2 = 1A$

Resistor Circuit (11)

- Identify all independent currents via junction rule.
- Determine the independent currents via loop rule.
- Find the Potential difference $V_{ab} = V_b V_a$.

Use Kirchhoff's rules to find

- (a) the current *I*,
- (b) the resistance R,
- (c) the emf \mathcal{E} ,
- (d) the voltage $V_{ab} \equiv V_b V_a$.

Resistor Circuit (10)

- (a) Find the current through the 12V battery.
- (b) Find the current through the 2Ω resistor.
- (c) Find the total power dissipated.
- (d) Find the voltage $V_{cd} \equiv V_d V_c$.
- (e) Find the voltage $V_{ab} \equiv V_b V_a$.

Resistor Circuit (12)

- Find the equivalent resistance R_{eq} of the circuit.
- Find the total power *P* dissipated in the circuit.

More Complex Capacitor Circuit

No two capacitors are in parallel or in series. Solution requires different strategy:

- zero charge on each conductor (here color coded),
- zero voltage around any closed loop.

Specifications: C_1, \ldots, Q_5, V . Five equations for unknowns Q_1, \ldots, Q_5 :

• $Q_1 + Q_2 - Q_4 - Q_5 = 0$

•
$$Q_3 + Q_4 - Q_1 = 0$$

• $\frac{Q_5}{C_5} + \frac{Q_3}{C_3} - \frac{Q_4}{C_4} = 0$
• $\frac{Q_2}{C_2} - \frac{Q_1}{C_1} - \frac{Q_3}{C_3} = 0$
• $V - \frac{Q_1}{C_1} - \frac{Q_4}{C_4} = 0$

Equivalent capacitance: $C_{eq} = \frac{Q_1 + Q_2}{V}$

a)
$$C_m = 1 \text{pF}, m = 1, \dots, 5 \text{ and } V = 1 \text{V}$$
:

$$C_{eq} = 1 \text{pF}, \ Q_3 = 0,$$

 $Q_1 = Q_2 = Q_4 = Q_5 = \frac{1}{2} \text{pC}.$

(b)
$$C_m = m \, \text{pF}, \, m = 1, \dots, 5 \text{ and } V = 1 \text{V}$$
:

$$C_{eq} = \frac{159}{71} \text{pF}, \ Q_1 = \frac{55}{71} \text{pC}, \ Q_2 = \frac{104}{71} \text{pC},$$

 $Q_3 = -\frac{9}{71} \text{pC}, \ Q_4 = \frac{64}{71} \text{pC}, \ Q_5 = \frac{95}{71} \text{pC}.$

Intermediate Exam II: Problem #2 (Spring '05)

- (a) Find the equivalent resistance R_{eq} .
- (b) Find the current I_3 through resistor R_3 .

Intermediate Exam II: Problem #2 (Spring '05)

Consider the electrical circuit shown.

- (a) Find the equivalent resistance R_{eq} .
- (b) Find the current I_3 through resistor R_3 .

(a)
$$R_{36} = \left(\frac{1}{R_3} + \frac{1}{R_6}\right)^{-1} = 2\Omega, \quad R_{eq} = R_2 + R_{36} = 4\Omega.$$

Intermediate Exam II: Problem #2 (Spring '05)

Consider the electrical circuit shown.

- (a) Find the equivalent resistance R_{eq} .
- (b) Find the current I_3 through resistor R_3 .

(a)
$$R_{36} = \left(\frac{1}{R_3} + \frac{1}{R_6}\right)^{-1} = 2\Omega, \quad R_{eq} = R_2 + R_{36} = 4\Omega$$

(b) $I_2 = I_{36} = \frac{12V}{R_{eq}} = 3A$
 $\Rightarrow V_3 = V_{36} = I_{36}R_{36} = 6V \quad \Rightarrow I_3 = \frac{V_3}{R_3} = 2A.$

Intermediate Exam II: Problem #2 (Spring '06)

Consider the two-loop circuit shown.

- (a) Find the current I_1 .
- (b) Find the current I_2 .

Intermediate Exam II: Problem #2 (Spring '06)

Consider the two-loop circuit shown.

- (a) Find the current I_1 .
- (b) Find the current I_2 .

(a)
$$-(2\Omega)(I_1) + 10V - (2\Omega)(I_1) - 2V = 0 \implies I_1 = \frac{8V}{4\Omega} = 2A.$$

Intermediate Exam II: Problem #2 (Spring '06)

Consider the two-loop circuit shown.

- (a) Find the current I_1 .
- (b) Find the current I_2 .

(a)
$$-(2\Omega)(I_1) + 10V - (2\Omega)(I_1) - 2V = 0 \Rightarrow I_1 = \frac{8V}{4\Omega} = 2A.$$

(b) $-(2\Omega)(I_2) + 10V - (2\Omega)(I_2) - (3\Omega)(I_2) = 0 \Rightarrow I_2 = \frac{10V}{7\Omega} = 1.43A.$

- (a) Find the current I when the switch S is open.
- (b) Find the power P_3 dissipated in resisistor R_3 when the switch is open.
- (c) Find the current I when the switch S is closed.
- (d) Find the power P_3 dissipated in resisistor R_3 when the switch is closed.

- (a) Find the current I when the switch S is open.
- (b) Find the power P_3 dissipated in resisistor R_3 when the switch is open.
- (c) Find the current I when the switch S is closed.
- (d) Find the power P_3 dissipated in resisistor R_3 when the switch is closed.

(a)
$$I = \frac{24V}{8\Omega} = 3A.$$

- (a) Find the current I when the switch S is open.
- (b) Find the power P_3 dissipated in resisistor R_3 when the switch is open.
- (c) Find the current I when the switch S is closed.
- (d) Find the power P_3 dissipated in resisistor R_3 when the switch is closed.

- (a) Find the current I when the switch S is open.
- (b) Find the power P_3 dissipated in resisistor R_3 when the switch is open.
- (c) Find the current I when the switch S is closed.
- (d) Find the power P_3 dissipated in resisistor R_3 when the switch is closed.

18/9/2015

[tsl363 - 27/29]

Consider the electric circuit shown.

(d) $P_3 = (2A)^2 (4\Omega) = 16W.$

- (a) Find the current I when the switch S is open.
- (b) Find the power P_3 dissipated in resisistor R_3 when the switch is open.
- (c) Find the current I when the switch S is closed.
- (d) Find the power P_3 dissipated in resisistor R_3 when the switch is closed.

Consider the resistor circuit shown.

- (a) Find the equivalent resistance R_{eq} .
- (b) Find the power *P* supplied by the battery.
- (c) Find the current I_4 through the 4Ω -resistor.

(d) Find the voltage V_2 across the 2Ω -resistor.

Consider the resistor circuit shown.

- (a) Find the equivalent resistance R_{eq} .
- (b) Find the power *P* supplied by the battery.
- (c) Find the current I_4 through the 4Ω -resistor.
- (d) Find the voltage V_2 across the 2Ω -resistor.

Solution:

(a) $R_{eq} = 8\Omega$.

Consider the resistor circuit shown.

- (a) Find the equivalent resistance R_{eq} .
- (b) Find the power *P* supplied by the battery.
- (c) Find the current I_4 through the 4Ω -resistor.
- (d) Find the voltage V_2 across the 2Ω -resistor.

(a)
$$R_{eq} = 8\Omega.$$

(b) $P = \frac{(24V)^2}{8\Omega} = 72W.$

Consider the resistor circuit shown.

(a) Find the equivalent resistance R_{eq} .

(b) Find the power *P* supplied by the battery.

(c) Find the current I_4 through the 4Ω -resistor.

(d) Find the voltage V_2 across the 2Ω -resistor.

(a)
$$R_{eq} = 8\Omega.$$

(b) $P = \frac{(24V)^2}{8\Omega} = 72W.$
(c) $I_4 = \frac{1}{2} \frac{24V}{8\Omega} = 1.5A.$

Consider the resistor circuit shown.

- (a) Find the equivalent resistance R_{eq} .
- (b) Find the power *P* supplied by the battery.
- (c) Find the current I_4 through the 4Ω -resistor.

(d) Find the voltage V_2 across the 2Ω -resistor.

Solution:

(a) $R_{eq} = 8\Omega$. (b) $P = \frac{(24V)^2}{8\Omega} = 72W$. (c) $I_4 = \frac{1}{2} \frac{24V}{8\Omega} = 1.5A$. (d) $V_2 = (1.5A)(2\Omega) = 3V$.

Consider the two-loop circuit shown.

- (a) Find the current I_1 .
- (b) Find the current I_2 .
- (c) Find the potential difference $V_a V_b$.

Consider the two-loop circuit shown.

- (a) Find the current I_1 .
- (b) Find the current I_2 .
- (c) Find the potential difference $V_a V_b$.

(a)
$$I_1 = \frac{8V + 10V}{7\Omega} = 2.57A.$$

Consider the two-loop circuit shown.

- (a) Find the current I_1 .
- (b) Find the current I_2 .
- (c) Find the potential difference $V_a V_b$.

(a)
$$I_1 = \frac{8V + 10V}{7\Omega} = 2.57A.$$

(b) $I_2 = \frac{8V - 6V}{9\Omega} = 0.22A.$

Consider the two-loop circuit shown.

- (a) Find the current I_1 .
- (b) Find the current I_2 .
- (c) Find the potential difference $V_a V_b$.

(a)
$$I_1 = \frac{8V + 10V}{7\Omega} = 2.57A.$$

(b) $I_2 = \frac{8V - 6V}{9\Omega} = 0.22A.$
(c) $V_a - V_b = 8V - 6V = 2V.$