[tex98] Ultrarelativistic Bose–Einstein gas

Consider a Bose-Einstein gas with ultrarelativistic one-particle energy $\epsilon_k = c\hbar k = cp$ in the grandcanonical ensemble at temperature T and chemical potential $\mu = 0$.

(a) Show that the one-particle density of states is $D(\epsilon) = (4\pi V/h^3 c^3)\epsilon^2$.

(b) Calculate the pressure p(T), the internal energy U(T, V), and the average number of particles in excited states $\mathcal{N}_{\epsilon}(T, V)$.

(c) Show that the heat capacity is $C_V/k_B = [16\pi^5/15h^3c^3]V(k_BT)^3$.

Solution: