[tex92] Relativistic ideal gas (entropy and internal energy)

(a) Derive from the result for the canonical partition function Z_N of the relativistic classical ideal gas as calculated in [tex91] the Helmholtz free energy A(T, V, N), the equation of state p(T, V, N), the chemical potential $\mu(T, V, N)$, and the entropy S(T, V, N).

(b) Use the recursion relation, $K'_n(u) = -K_{n-1}(u) - (n/u)K_n(u)$, for the modified Bessel functions to derive the following expression for the internal energy:

$$U(T,N) = Nk_B T u \left[\frac{K_1(u)}{K_2(u)} + \frac{3}{u} - 1 \right], \quad u \equiv \beta m c^2, \quad \beta = \frac{1}{k_B T}.$$

Solution: