[tex86] Quantum paramagnet (Brillouin function)

Consider an array of N noninteracting localized magnetic dipole moments \mathbf{m}_i produced by localized effective atomic spins in a paramagnetic insulator. In the presence of a magnetic field **H** pointing in z-direction, the Hamiltonian of this system represents the Zeeman energy:

$$\mathcal{H} = -\sum_{i=1}^{N} \mathbf{m}_i \cdot \mathbf{H} = -H\sum_{i=1}^{N} m_i^z,$$

where m_i^z can assume the 2s + 1 values $(-s, -s + 1, \dots, s - 1, s)$ for fixed $s = \frac{1}{2}, 1, \frac{3}{2}, \dots$

(a) Calculate the canonical partition function Z_N of this system.

(b) Calculate the Gibbs free energy G(T, H, N). Calculate the magnetization M(T, H, N) (Brillouin function).

(c) Set $s = \frac{1}{2}$ to recover the result of [tex85]. Take the limit $s \to \infty$ and recover the result of [tex84] for the rescaled quantities $\tilde{M} = M/s$, $\tilde{H} = Hs$.

Solution: