[tex83] Vibrational heat capacity of a solid

The vibrational Helmholtz free energy of a harmonic crystal of N atoms in thermal equilibrium at temperature T is

$$
A = \frac{1}{2} \sum_{i=1}^{3N} \hbar \omega_i + k_B T \sum_{i=1}^{3N} \ln (1 - e^{-\beta \hbar \omega_i}),
$$

where the ω_i are the normal modes of transverse and longitudinal lattice vibrations (phonons). In Debye's theory, the density of modes is approximated by the functions $n(\omega) = 9N\omega^2/\omega_D^3$, where the Debye frequency ω_D is an undetermined parameter.

(a) Show that the internal energy $U = A + TS$ in the Debye approximation reads

$$
U = \frac{9}{8} N \hbar \omega_D + 9N k_B T \left(\frac{T}{\Theta_D}\right)^3 \int_0^{\Theta_D/T} dx \frac{x^3}{e^x - 1},
$$

where $\Theta_D = \hbar \omega_D / k_B$ is called the Debye temperature.

(b) Derive an expression for the heat capacity $C = (\partial U/\partial T)_N$.

(c) At low temperatures the upper boundary Θ_D/T in the above integral may be replaced by infinity, $\int_0^\infty dx \, x^3/(e^x - 1) = \pi^4/15$. Use this fact to determine the leading low-temperature term of the heat capacity C.

Solution: