
[tex8] Idealized Otto cycle

Consider the four steps of the idealized Otto cycle for a classical ideal gas $[pV = nRT, U = C_VT]$ with $C_V = \alpha nR$.

- (a) Determine the heat transfer, ΔQ , the work performance, ΔW , and the change in internal energy, ΔU , for each of the four steps:
 - $1 \rightarrow 2$ adiabatic compression of air-fuel mixture: S = const.
 - $2 \rightarrow 3$ explosion of air-fuel mixture: V = const.
 - $3 \rightarrow 4$ adiabatic expansion of exhaust gas: S = const.
 - $4 \rightarrow 1$ isochoric release of exhaust gas: V = const.
- (c) Calculate the efficiency η and express it as a function of the compression ratio $K \equiv V_1/V_2$.

Solution: