[tex70] Collision rate in classical ideal gas

Given the collision rate $R_{coll} = \Omega n_1 n_2 \pi d^2 |\mathbf{v}_2 - \mathbf{v}_1|$ in a region of volume Ω in the path of two single-velocity beams of particles (diameter d, mass m, velocities $\mathbf{v}_1, \mathbf{v}_2$, densities n_1, n_2), show that the collision rate within a region Ω of a classical ideal gas with density n in thermal equilibrium at temperature T is

 $R = 2\Omega d^2 n^2 \sqrt{\pi k_B T/m}.$

Solution: