[tex47] Statistical concept of uncertainty

An experiment has n possible outcomes that occur with probabilities P_1, \ldots, P_n . The uncertainty about the outcome of the experiment is defined as

$$\Sigma(P_1,\ldots,P_n) = -\sum_{i=1}^n P_i \ln P_i.$$

(a) Prove that the maximum uncertainty occurs if all P_i are equal.

(a) From that the intermation uncertainty occurs if an T_i are equal: (b) The n^2 combined outcomes of two independent experiments have probabilities $P_{ij} = P_i^I P_j^{II}$. Show that the uncertainty about the combined outcome of the two independent experiments is equal to the sum of the uncertainties of the outcomes of each experiment: $\Sigma(\{P_{ij}\}) = \Sigma(\{P_i^I\}) + \Sigma(\{P_i^I\})$.

Solution: