[tex39] Rubber band heat engine

Consider a heat engine that uses a rubber band in the three-step cycle shown. The equation of state $J = \alpha LT$ with $\alpha = \text{const}$ relates the tension J in the band to the length L of the band and to the absolute temperature T. The heat capacity of the band at constant length is $C_L = \text{const}$. Calculate the heat transfer ΔQ and the work performance ΔW in each of the three steps in the cyclic process shown:

- $1 \rightarrow 2$ relaxation at T = const,
- $2 \rightarrow 3$ expansion at J = const,
- $3 \rightarrow 1$ heating up at L = const.

From these results calculate the efficiency η of the rubber band heat engine. Compare η with the efficiency of a Carnot engine operating between the same temperatures.

Solution: