[tex37] Coexistence line of continuous phase transition

Consider 1 mol of a fluid with two phases 1 and 2 in coexistence. The coexistence line is $p(T)_{coex}$. Suppose that the volume V and the entropy S vary continuously at the transition ($\Delta S=0$ and $\Delta V=0$), but the response functions C_p (heat capacity at constant pressure), α_p (thermal expansivity), and κ_T (isothermal compressibility) are discontinuous. Now consider the differentials dS and dV for each phase and for paths in the (T,p)-plane. Then calculate $\Delta S \doteq dS^{(2)} - dS^{(1)}$ and $\Delta V \doteq dV^{(2)} - dV^{(1)}$ between points an infinitesimal distance across the coexistence line

- (a) at constant p,
- (b) at constant T.

In the limit where the distance between the two points shrinks to zero, the ratio $\Delta S/\Delta V$ stays finite and expresses (via Clausius-Clapeyron) the slope $(dp/dT)_{coex}$ of the coexistence line in terms of the discontinuities, ΔC_p , $\Delta \alpha_p$, $\Delta \kappa_T$, in the response functions.

(c) Derive a relation between ΔC_p , $\Delta \alpha_p$, $\Delta \kappa_T$ from the consistency condition of the results obtained in parts (a) and (b).

Solution: