[tex3] Carnot cycle of the classical ideal gas

Consider the four steps of a Carnot engine with the operating material in the form of a classical ideal gas $[pV = nRT, U = C_VT \text{ with } C_V = \text{const}].$

(a) Determine the heat transfer, ΔQ , the work performance, ΔW , and the change in internal energy, ΔU , for each of the four steps:

- $1 \rightarrow 2$ isothermal expansion: $T = T_H = \text{const}, V_2 > V_1$.
- $2 \rightarrow 3$ adiabatic expansion: $S = \text{const}, V_3 > V_2$.
- $3 \rightarrow 4$ isothermal compression: $T = T_L = \text{const}, V_4 < V_3.$
- $4 \rightarrow 1$ adiabatic compression: $S = \text{const}, V_1 < V_4$.
- (b) Sketch the Carnot cycle in the (V, p)-plane and in the (U, S)-plane.
- (c) Show that the efficiency is $\eta_C = 1 T_L/T_H$.

Solution: