[tex201] Ising lattice gas in $\mathcal{D} = 1$: entropy II

Here we explore the T-dependence of the entropy S for the lattice gas with the number of particles $N_{\rm p}$ kept constant. We start from the expressions $S(T, V, \mu)$ and $N_{\rm p}(T, V, \mu)$ established in [tex195]. Switching from the grandcanonical to the canonical ensemble means (effectively) expressing μ as a function of $N_{\rm p}$ and then substituting the result into the expression of \bar{S} .

To calculate and plot \bar{S}/k_B as a function of $k_B T/u$ for fixed N_p at $u \neq 0$ proceed as follows: (i) Introduce the quantities $x \doteq e^{\beta u/2}$, $z \doteq e^{\beta \mu/2}$, and $n \doteq 2N_p - 1$. The variables z, x, n are not independent.

(ii) Rewrite the relation $N_{\rm p}(T, V, \mu) = \frac{1}{2}$ as a relation between x, z, and n. (iii) In this exercise we only consider the case n = 0 pertaining to half filling $N_{\rm p} = \frac{1}{2}N$, implying a functional relation z(x) between the remaining two variables.

(iv) Write \bar{S}/k_B as a function of x. It represents a universal curve entropy versus scaled temperature $k_B T/|u|$, which depends only on the strength of the (attractive or repulsive) interaction.

Solution: