[tex188] Hosts and tags at level 2

Consider a system of N_A orbitals. It takes two orbitals to accommodate a host particle at level 2 and one more orbital for each tag the carry along as illustrated in [tln91]. The cominatorics of such a system is specified by two species of particles with the following interaction coefficients and capacity constants:

$$g_{\rm hh} = 2$$
, $g_{\rm th} = -1$, $g_{\rm ht} = 1$, $g_{\rm tt} = 0$; $A_{\rm h} = N_A - 1$, $A_{\rm t} = 0$.

- (a) Derive a compact expression for the scaled configurational entropy $\bar{S} \doteq S/N_A$ as a function of the densities $\bar{N}_h \doteq N_h/N_A$ of hosts and $\bar{N}_t \doteq N_t/N_A$ of tags.
- (b) Produce of contour plot of the function $\bar{S}(\bar{N_h}, \bar{N_t})$. (c) Determine the value of $\bar{N_h}^{(\max)}$ at fixed $\bar{N_t}$ which maximizes \bar{S} . Include the function $\bar{N_h}^{(\max)}(\bar{N_t})$ as a dashed line in the contour plot.
- (d) Construct from this information a function $\bar{S}_{\text{max}}(\bar{N})$, which represents the maximum configurational entropy as a function of the total number $\bar{N} = \bar{N}_h + \bar{N}_t$ of particles. Produce a plot of $\bar{S}_{\max}(\bar{N})$. Mark and explain all landmarks on that curve.

Solution: