[tex181] Paramagnetic FD gas VIII: magnetization curves at T = 0

(a) Extract, by means of asymptotic expansion, from the paramagnetic representation,

$$\bar{M} = \frac{1}{2} \frac{f_{\mathcal{D}/2} \left(z e^{\hat{H}/2\hat{T}} \right) - f_{\mathcal{D}/2} \left(z e^{-\hat{H}/2\hat{T}} \right)}{f_{\mathcal{D}/2} \left(z e^{\hat{H}/2\hat{T}} \right) + f_{\mathcal{D}/2} \left(z e^{-\hat{H}/2\hat{T}} \right)},\tag{1}$$

$$\hat{T}^{-\mathcal{D}/2} = \Gamma(\mathcal{D}/2+1) \Big[f_{\mathcal{D}/2} \big(z e^{\hat{H}/2\hat{T}} \big) + f_{\mathcal{D}/2} \big(z e^{-\hat{H}/2\hat{T}} \big) \Big],$$
(2)

of the function $\overline{M}(\hat{T}, \hat{H})$ derived in [tsc16] the following general inverse relation of the zero-temperature magnetization curve $\overline{M}(0, \hat{H})$:

$$\hat{H} = \left(\frac{1}{2} + \bar{M}\right)^{2/\mathcal{D}} - \left(\frac{1}{2} - \bar{M}\right)^{2/\mathcal{D}}$$

- (b) Produce graphical representations of the results for $\mathcal{D} = 1, 2, 3, 5, 10$.
- (c) Infer explicit analytic functions $\overline{M}(0, \hat{H})$ for $\mathcal{D} = 1, 2, 4, 8$.
- (d) Calculate the initial slope of $\overline{M}(0, \hat{H})$ for arbitrary values of \mathcal{D} .

Solution: