[tex175] Critical singularities of van der Waals gas

Start from the van der Waals equation of state,

$$\left(\bar{p} + \frac{3}{\bar{V}^2}\right)(3\bar{V} - 1) = 8\bar{T},$$

in reduced units,

$$\bar{p} \doteq \frac{p}{p_c}, \quad \bar{V} \doteq \frac{V}{V_c}, \quad \bar{T} \doteq \frac{T}{T_c}, \quad \bar{\rho}_l \equiv \frac{\rho_l}{\rho_c}, \qquad p_c = \frac{a}{27b^2}, \quad V_c = 3nb, \quad T_c = \frac{8a}{27bR}.$$

Introduce small deviations from the critical values,

$$\bar{p} \doteq 1 + \pi, \quad \bar{V} \doteq 1 + \omega, \quad \bar{T} \doteq 1 + \tau$$

and write the equation of state in the from $\pi = \pi(\tau, \omega)$.

(a) Determine the critical exponent δ from the critical isotherm, $\pi(0, \omega)$.

(b) Determine the critical exponent γ from the isothermal compressibility, $\kappa_T \doteq -V^{-1}(\partial V/\partial p)_T$. (c) To calculate the critical exponent β expand the function $\pi(\tau, \omega)$ to third-order in both variables. The shape of the coexistence curve near the critical point is determined by the the function $\omega_s(-\tau_s)$ inferred from solution of $\pi(-\tau, \omega) = \pi(-\tau, -\omega)$.

(d) To calculate the exponent α find the discontinuity of the heat capacity C_p at the critical point. Hint: Use $C_p - C_V = TV\alpha_p^2/\kappa_T$, which is nonzero only below T_c .

Solution: