[tex174] Order parameter of first-order Ginzburg-Landau transition

The Ginzburg-Landau expression for the Helmholtz free energy of system undergoin a first-order transition reads

$$A(T, M) = \alpha_0(T) + \alpha_2(T)M^2 + \alpha_4(T)M^4 + \alpha_6(T)M^6,$$

$$\alpha_2(T) = \beta_2(T - T_0), \quad \alpha_4(T) < 0, \quad \alpha_6(T) > 0.$$

(a) At the critical temperature T_c , the dependence of A on M has degenerate minima at M = 0 and $M = \pm M_c$. Find T_c and M_c .

(b) Show that the extremum at $M_{\rm s} = 0$ of A is a minimum at $T > T_0$.

(c) Find location $Ms \neq of$ the other extremum of A and determine the range of T for which it is a minimum.

Solution: