[tex168] Exact and inexact differentials III

Consider the differentials

$$dF_1 = \frac{\pi}{2} \left[\cos\left(\frac{\pi x}{2}\right) \sin\left(\frac{\pi y}{2}\right) dx - \sin\left(\frac{\pi x}{2}\right) \cos\left(\frac{\pi y}{2}\right) dy \right],$$
$$dF_2 = \frac{\pi}{2} \left[\cos\left(\frac{\pi x}{2}\right) \cos\left(\frac{\pi y}{2}\right) dx - \sin\left(\frac{\pi x}{2}\right) \sin\left(\frac{\pi y}{2}\right) dy \right].$$

(a) Show that dF_1 is inexact and dF_2 is exact.

(b) Calculate the integrals of dF_1 along paths abc and adc. The results are different, which is expected for an inexact differential.

(c) Calculate the integrals of dF_2 along paths abc and adc. The results must be equal for an exact differential.

(d) Find the function $F_2(x, y)$ of which the given dF_2 is its differential. This is done by integrating dF_2 from a chosen reference point, e.g. (1,1), to a generic point (x, y). The choice of reference point enters the function $F_2(x, y)$ as an additive integration constant.

(e) Confirm that the results obtained in part (c) are equal to $F_2(3,2) - F_2(1,1)$, independent of the integration constant obtained in part (d).

Solution: