[tex16] Idealized Diesel cycle

Consider the four steps of the Diesel cycle for a classical ideal gas $[pV = nRT, U = C_V T$ with $C_V = \alpha nR$].

(a) Determine the heat transfer, ΔQ , the work performance, ΔW , and the change in internal energy, ΔU , for each of the four steps:

- $1 \rightarrow 2$ adiabatic compression of air: $S = {\rm const.}$
- $2 \rightarrow 3$ isobaric expansion during explosion: p = const.
- $3 \rightarrow 4$ adiabatic expansion after explosion: S = const.
- $4 \rightarrow 1$ isochoric release of exhaust gas: V = const.

Calculate the efficiency η and express it as a function of the two parameters $K \equiv V_1/V_2$ and $L \equiv V_3/V_2$.

Solution: