[tex151] Adiabatic atmosphere

Consider a column of air [molar mass M = 29g] treated as a classical ideal gas $[pV = nRT, C_p/C_V = \gamma = 1.41]$ in a uniform gravitational field g = 9.81m/s². The column is assumed to be in mechanical equilibrium but not (yet) in thermal equilibrium. The mechanical equilibrium is established by gravitational pressure and governed by the adiabatic relation $pV^{\gamma} = \text{const.}$

(a) Calculate the dependence on height z of the pressure p, the mass density ρ , and the temperature T, assuming that $p = p_0$ and $T = T_0$ at z = 0.

(b) Find the height z_m , expressed as a function of T_0 , at which T, p, and ρ all reach zero. What is that height (in meters) if T_0 is room temperature?

Hints: (i) Infer from pV^{γ} =const the differential relation $dT/T = [(\gamma - 1)/\gamma]dp/p$. (ii) Use the relation $dp(z) = -\rho(z)d\mathcal{U}(z)$ from [tex150] linking pressure, mass density, and gravitational potential to infer differential equations for T(z) and p(z).

Solution: