[tex150] Isothermal atmosphere

Consider a column of air [molar mass M = 29g] treated as a classical ideal gas [pV = nRT] in a uniform gravitational field g = 9.81m/s². The column is assumed to be in thermal equilibrium.

(a) Calculate the dependence of pressure p on height z and (unifom) temperature T, assuming that the pressure is p_0 at z = 0.

(b) At what height z_1 (in meters) has the pressure fallen to half of p_0 and at what height z_2 to one percent of p_0 if the temperature is 20°C everywhere?

Hint: Start from the relation, $dp(z) = -\rho(z)d\mathcal{U}(z)$, between pressure p, mass density ρ , and gravitational potential \mathcal{U} at height z. This relation expresses the increment of pressure caused by the weight of a thin layer of air. The ideal-gas equation of state is assumed to hold locally at all heights.

Solution: