[tex149] Square heat engine

Consider 1 mol of a monatomic classical ideal gas $[pV = RT, U = \frac{3}{2}RT]$ confined to a cylinder by a piston. The cylinder is in thermal contact with a heat bath of adjustable temperature. The gas undergoes a quasistatic, cyclic process $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$ as shown. Use p_1, V_1, T_1 as units for pressure, volume, and temperature, respectively.

(a) Find $p_2, V_2, T_2, p_3, V_3, T_3$, and p_4, V_4, T_4 in these units.

(b) Find the work performance, ΔW_{12} , ΔW_{23} , ΔW_{34} , ΔW_{41} , the change in internal energy, ΔU_{12} , ΔU_{23} , ΔU_{34} , ΔU_{41} , and the heat transfer, ΔQ_{12} , ΔQ_{23} , ΔQ_{34} , ΔQ_{41} , along the legs of the cycle. Express these quantities in units of RT_1 .

(c) Find the net work ΔW_{net} performed during the cycle. Find also the heat ΔQ_{in} absorbed and the heat ΔQ_{out} expelled by the gas during the cycle.

(d) Find the efficiency η_S of this cycle in the role of heat engine.

Solution: