[tex148] Circular heat engine II

Consider 1 mol of a monatomic classical ideal gas $[pV = RT, U = \frac{3}{2}RT]$ confined to a cylinder by a piston. The cylinder is in thermal contact with a heat bath of adjustable temperature. As the piston moves back and forth between volume $V = V_0(1-r)$ and $V = V_0(1+r)$ quasistatically, the temperature of the gas is being adjusted via thermal contact such that the cycle becomes circular in the (V, p)-plane and proceeds in clockwise direction (ϕ from 0 to 2π).

(a) Calculate the rate $dW/d\phi$ at which work is being performed, the rate $dU/d\phi$ at which the internal energy changes, and the rate $dQ/d\phi$ at which heat is being transferred.

(b) Set r = 0.5 and identify the segments along the circle where each rate is positive or negative. (c) Repeat the previous part for r = 0.9.

(d) Plot all three rates as functions of ϕ/π for r = 0.5 in one graph and then for r = 0.9 in a second graph.

Solution: