[tex136] Irreversible decompression

Consider an insulating box with two compartments. Each compartment initially contains N atoms of a monatomic classical ideal gas $[pV = Nk_{\rm B}T, C_V = \frac{3}{2}Nk_{\rm B}]$ in equilibrium at initial pressures $p_1 \neq p_2$ and at the same initial temperature T. Gas atoms are then allowed to leak through a hole in the dividing wall.

(a) Show that the temperature remains the same in the final equilibrium state.

- (b) Find the uniform pressure p in the final equilibrium state as a function of p_1 and p_2 .
- (c) Find the increase in total entropy, ΔS , between the initial and final equilibrium states.

Hint: Use the result for S(T, V, N) derived in [tex14].

Solution: