[tex131] Idealized Stirling cycle

Consider the four steps of the idealized Stirling cycle for the classical ideal gas $[pV = Nk_BT, C_V = \alpha Nk_B, \gamma \doteq C_p/C_V = (\alpha + 1)/\alpha].$

(a) Calculate the work performance, ΔW , the heat transfer, ΔQ , and the change in internal energy, ΔU , for each step.

- $1 \rightarrow 2$ isothermal compression: $T = T_L$,
- $2 \rightarrow 3$ isochoric heating up: $V = V_2$,
- $3 \rightarrow 4$ isothermal expansion: $T = T_H$,
- $4 \rightarrow 1$ isochoric cooling down: $V = V_1$.
- (b) Calculate the efficiency η and express it as a function of T_H and T_L .

Solution: