[tex130] BE gas in \mathcal{D} dimensions VIII: speed of sound

(a) Start from the relation $c = (\rho \kappa_S)^{-1/2}$ for the speed of sound as established in [tex18], where $\rho = m/v$ is the mass density and κ_S the adiabatic compressibility. Use general thermodynamic relations between response functions to derive the following expression for c in terms of dimensionless quantities:

$$\frac{mc^2}{k_BT} = \frac{(v/v_T)}{(p_T\kappa_T)} \left[1 + \frac{(T/T_p)^2 (v/v_T) (T_p\alpha_p)^2}{(p_T\kappa_T) (C_V/\mathcal{N}k_B)} \right],$$

where v_T, p_T, T_p are defined in [tln71]. (b) Use the expressions derived in [tex129] for α_p , in [tex128] for κ_T , and in [tex97] for C_V to derive the result

$$\frac{mc^2}{k_BT} = \gamma \, \frac{g_{\mathcal{D}/2+1}(z)}{g_{\mathcal{D}/2}(z)}, \quad \gamma = 1 + \frac{2}{\mathcal{D}}.$$

(c) Relate the T-dependence of mc^2 to that of the isochore for v = const and to that of the isobar for p = const.

Solution: