[tex117] FD gas in \mathcal{D} dimensions: chemical potential I

(a) Start from the fundamental thermodynamic relation $\mathcal{N} = (gV/\lambda_T^{\mathcal{D}})f_{\mathcal{D}/2}(z)$ for the ideal Fermi-Dirac gas in \mathcal{D} dimensions and use the reference temperature $k_B T_v = \Lambda/v^{2/\mathcal{D}}$, $v \doteq gV/\mathcal{N}$, $\Lambda \doteq h^2/2\pi m$ to derive the following parametric expression for the dependence on temperature T of the chemical potential μ :

$$\frac{\mu}{k_B T_v} = \frac{T}{T_v} \ln z, \qquad \frac{T}{T_v} = [f_{\mathcal{D}/2}(z)]^{-2/\mathcal{D}}.$$

(b) Derive the following expression for the Fermi energy ϵ_F and the Fermi temperature T_F :

$$\lim_{T \to 0} \frac{\mu(T)}{k_B T_v} = \frac{\epsilon_F}{k_B T_v} = \frac{T_F}{T_v} = \left[\Gamma(\mathcal{D}/2 + 1)\right]^{2/\mathcal{D}}$$

(c) Show that this result includes the familiar result, $\epsilon_F = (h^2/2m)(3N/4\pi gV)^{2/3}$ for $\mathcal{D} = 3$.

Solution: