[tex108] Joule cycle

Consider the four steps of the Joule cycle for the classical ideal gas $[pV = Nk_BT, C_V = \alpha Nk_B, \gamma \doteq C_p/C_V = (\alpha + 1)/\alpha]$. It represents an idealized version of the Escher-Wyss gas turbine. (a) Calculate the work performance, ΔW , the heat transfer, ΔQ , and the change in internal energy, ΔU , for each step.

- $1 \rightarrow 2$ adiabatic expansion: S = const.
- $2 \rightarrow 3$ isobaric contraction: p = const.
- $3 \rightarrow 4$ adiabatic compression: S = const.
- $4 \rightarrow 1$ isobaric expansion: p = const.
- (b) Calculate the efficiency η and express it as a function of the pressure ratio p_2/p_1 .
- (c) Sketch the Joule cycle in the (U, S)-plane.

Solution: