[tex102] FD gas in \mathcal{D} dimensions: ground-state energy

Given are the following expressions for the average number of particles, the average energy, the average occupation number at T = 0, and the density of states for an ideal Fermi-Dirac gas in \mathcal{D} dimensions:

$$\mathcal{N} = \sum_{k} \langle n_k \rangle, \quad U = \sum_{k} \langle n_k \rangle \epsilon_k, \quad \langle n_k \rangle = \Theta(\epsilon_F - \epsilon_k), \quad D(\epsilon) = \frac{gV}{\Gamma(\mathcal{D}/2)} \left(\frac{2\pi m}{h^2}\right)^{\mathcal{D}/2} \epsilon^{\mathcal{D}/2 - 1}.$$

Derive from these expressions the following results for the dependence of the ground-state energy per particle, U_0/\mathcal{N} , on the Fermi energy ϵ_F and for the dependence of the ground-state energy density U_0/V on the particle density \mathcal{N}/V :

$$\frac{U_0}{\mathcal{N}} = \frac{\mathcal{D}}{\mathcal{D}+2}\epsilon_F, \qquad \frac{U_0}{V} \propto \left(\frac{\mathcal{N}}{V}\right)^{(\mathcal{D}+2)/\mathcal{D}}.$$

Solution: