
Thermodynamics of Phase Transitions III [tsc8]

This module begins by picking up a thread from part II: the discussion of
the mean-field ferromagnet.

Ginzburg-Landau theory of second-order phase transitions:

Essential features of a continuous order-disorder transition (2nd-order) such
as realized in the mean-field model of [tln48] are encoded in the Helmholtz
free energy expanded in powers of the order parameter (in scaled units):
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A theory primarily concerned with the thermodynamics near continuous
transitions of systems with specific order parameters can employ the Ginzburg-
Landau template for the Helmholtz free energy:

A(T,M) = α0(T ) + α2(T )M2 + α4(T )M4.

The expansion coefficients must satisfy two conditions:

α2(T ) = β2(T − Tc), α4(T ) > 0.
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B Spontaneous magnetization M(T,H = 0):

H =

(
∂A

∂M

)
T

= 2α2(T )M + 4α4(T )M3 = 0

⇒ M(T, 0) =


0 : T ≥ Tc,√

β2
2α4

(Tc − T )1/2 : T ≤ Tc.
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B Critical isotherm M(T = Tc, H):

H = 2α2(Tc)︸ ︷︷ ︸
0

M + 4α4(Tc)M
3 ⇒ M(Tc, H) =

(
H

4α4(Tc)

)1/3

.
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B Isothermal susceptibility χT (T,H = 0):

χ−1T =

(
∂2A

∂M2

)
T

= 2α2 + 12α4M
2 =

{
2β2(T − Tc) : T ≥ Tc,

4β2(Tc − T ) : T ≤ Tc.

where we have used α2 = β2(T − Tc), M2 =
β2

2α4

(Tc − T )θ(Tc − T ).

B Heat capacity CH(T,H = 0) = −T
(
∂2G

∂T 2

)
H=0

:

For the critical singularity of CH use the expression,

G(T,H = 0) = A(T,M) = α0 + α2M
2 + . . .

= α0 −
β2
2

2α4

(Tc − T )2θ(Tc − T ) + . . .

Discontinuity at Tc: ∆CH = CH(T−c )− CH(T+
c ) = Tc

β2
2

α4

.
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Ginzburg-Landau-theory of first-order phase transitions:

With two modifications, the expression for the Helmholtz free energy de-
scribes a discontinuous order-disorder transition (1st-order):

A(T,M) = α0(T ) + α2(T )M2 + α4(T )M4 + α6(T )M6,

α2(T ) = β2(T − T0), α4(T ) < 0, α6(T ) > 0.
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Notice the different development of the curves A(T,M) versus order param-
eter M in situations that characterize 2nd-order and 1st-order transitions:1

– Continuous transition: Each curve has either a single minimum at
M = 0 or a degenerate pair of minima at ±M 6= 0. With T decreasing,
the minimum (continuously) shifts from M = 0 to M 6= 0.

– Discontinuous transition: There is a range of T where the curve has
coexisting minima at M = 0 and at M 6= 0. With T decreasing, the
lower minimum (discontinuously) jumps from M = 0 to M 6= 0.

In both cases the degeneracy of the minima at ±M 6= 0 are indicative of the
fact that the spontaneous magnetic ordering is symmetry breaking.

Conditions for Tc in the discontinuous transition: Minima of A(T,M) at
M = 0 and at M = ±Mc 6= 0 are degenerate.

⇒ A(Tc,M)− α0 = 0,
∂

∂M
A(Tc,M)

∣∣∣
Mc

= 0.

1In general, when expanding the free energy as a power series of the order parameter, only
those terms are included which are compatible with the symmetry of the Hamiltonian.
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Extraction of Mc and Tc from the degeneracy condition [tex174]:

M2
c = − α4

2α6

, Tc = T0 +
α2
4

4β2α6

.

Find local extrema Ms of free-energy curves [tex174]:

B Ms = 0 is a local minimum for T > T0.

B M2
s =
|α4|
3α6

[
1 +

√
1− 3α2α6

α2
4

]
is a local minimum at T < T1,

where T1 = T0 +
α2
4

3β2α6

.
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Interpretation of T -dependence of Ms:

– At least on solution exists for any T . For T0 < T < T1 both exist. The
one with the lower free energy energy is stable, the other is metastable.

– Upon cooling from high T , the macrostate with Ms = 0 will prevail
down to Tc and may survive down to T0.

– The system may switch to the macrostate with Ms = neq0 with in-
creasing probability between Tc and T0. It must switch at T0.

– Upon heating up from low T , the macrostate with Ms 6= 0 will prevail
up to Tc and may survive up to T1.

– The system may switch to the macrostate with Ms = 0 with increasing
probability between Tc and T1. It must switch at T1.

– Quasi-static processes will undergo a reversible transition at Tc. Faster
processes will be subject to effects of hysteresis.
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Ornstein-Zernike theory for correlations:

The Ginzburg-Landau order parameter is extended into a scalar field m(r).

Free-energy is attributed to the order-parameter field and the rate of its
spatial variation. The quadratic Ginzburg-Landau term is generalized into

A− α0 = b̃2t

[∫
dDr

[
m(r)

]2
+ g

∫
dDr[∇m(r)

]2]
, t

.
=
|T − Tc|
Tc

.

Fourier transform in D-dimensional space:

m̃(q) =

∫
dDrm(r) eıq·r ⇔ m(r) =

∫
dDq

(2π)D
m̃(q) e−ıq·r.

⇒ A− α0 =

∫
dDq

(2π)D
∣∣m̃(q)

∣∣2[b̃2t+ gq2
]
.

The quadratic dependence of A on m̃(q) is used to justify equipartition:∣∣m̃(q)
∣∣2[b̃2t+ gq2

]
= kBT.

Order-parameter correlation function:

Γ(r)
.
= 〈m(r)m(0)〉 − 〈m(r)〉〈m(0)〉.

Structure factor (via Fourier transform):

Γ̃(q) =
∣∣m̃(q)

∣∣2 =
kBT

b̃2t+ gq2
.

Ornstein-Zernike correlations: Γ(r) ∼


e−r/ξ

rD−2
: T 6= Tc,

1

rD−2
: T = Tc.

Correlation length: ξ =

√
gTc

b̃2|T − Tc|
.

Low-dimensional systems (D ≤ 2) are known to be strongly fluctuating. For
them the Ornstein-Zernike theory is not applicable.
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Critical-point exponents:

Thermodynamic systems at critical points are highly sensitive to specific
perturbations and exhibit an enhanced level of fluctuations.

Response functions tend to diverge at critical points and thermodynamic
functions tend to have cusp singularities.

Basic types of singularities:

(a) power-law divergence: f(ε) = A±|ε|λ + . . . (λ < 0)

(b) power-law cusp: f(ε) = f0 + A±|ε|λ + . . . (λ > 0)

(c) discontinuity: f(ε) = f0 + lim
λ→0

A±|ε|λ + . . .

(d) logarithmic singularity: f(ε) = lim
λ→0

A±
λ

[
|ε|λ − 1

]
= A±

∣∣ ln |ε|∣∣
Here ε stands for a deviation of a thermodynamic variable from its critical-
point value. In some cases, only positive or only negative ε are realized.

The critical amplitudes A+ and A− for ε > 0 and ε < 0, respectively, or often
not the same. The critical-point exponent λ may be different for ε > 0 and
ε < 0 as well, but that is rarely the case.
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Critical singularities of magnetic system:

The control variables are T (temperature) and H (magnetic field).

The order parameter is the spontaneous magnetization M .

Scaled temperature: τ
.
=
T − Tc
Tc

.

Heat capacity: CH ∼

{
A|τ |−α : τ > 0,

A′|τ |−α′
: τ < 0,

H = 0.

Order parameter: M ∼ B|τ |β, T < Tc, H = 0.

Susceptibility: χT ∼

{
C|τ |−γ : τ > 0,

C ′|τ |−γ′ : τ < 0,
H = 0.

Critical isotherm: M ∼ DH1/δ, T = Tc.

Correlation function: Γ(r) ∼


e−r/ξ

rD−2
: T 6= Tc,

1

rD−2+η
: T = Tc H = 0.

Correlation length: ξ ∼ |τ |−ν .

Emergent singularities characterized by exponents β and δ:
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Critical singularities of fluid system:

The control variables are T (temperature) and p (pressure).

The order parameter is the scaled density difference:
ρl − ρg
ρc

.

Scaled temperature: τ
.
=
T − Tc
Tc

.

Heat capacity: Cp ∼

{
A|τ |−α : τ > 0,

A′|τ |−α′
: τ < 0,

p = pc.

Order parameter:
ρl − ρg
ρc

∼ B|τ |β, T < Tc, p = pc.

Compressibility: κT ∼

{
C|τ |−γ : τ > 0,

C ′|τ |−γ′ : τ < 0,
p = pc.

Critical isotherm:

∣∣∣∣ρ− ρcρc

∣∣∣∣ ∼ D

∣∣∣∣p− pcpc

∣∣∣∣1/δ , T = Tc.

Correlation function: Γ(r) ∼


e−r/ξ

rD−2
: T 6= Tc,

1

rD−2+η
: T = Tc p = pc.

Correlation length: ξ ∼ |τ |−ν .

Emergent singularities characterized by exponents β and δ:
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Inequalities for critical-point exponents:

The exponents identified identified above for critical-point singularities can-
not assume just any values. They are constrained in a number of different
ways, which includes thermal equilibrium and stability conditions.

These constraints manifest themselves as inequalities that must be satisfied
two or three exponents. For the sake of simplicity (with only a minor sacrifice
of rigor) we do not distinguish between primed and unprimed exponents here.

The five must important inequalities are the following:

B α + 2β + γ ≥ 2

B α + β(δ + 1) ≥ 2

B γ ≥ β(δ − 1)

B γ ≤ (2− η)ν

B Dν ≥ 2− α (D is the dimensionality of the space)2

The derivation of the first inequality is outlined here as an example:

– Use a well-established thermodynamic relation:

CH − CM =
Tα2

H

χT
, αH

.
= −

(
∂M

∂T

)
H

.

– Use a thermal stability condition: CM ≥ 0 ⇒ CH ≥
Tα2

H

χT
.

– Set H = 0, take the limit T → T−c , and identify the singularities:

CH ∼ |τ |−α, χT ∼ |τ |−γ, M ∼ |τ |β ⇒ αH ∼ |τ |β−1.

– Invoke lemma: if f1(x) ∼ xλ1 , f2(x) ∼ xλ2 and f1(x) ≤ f2(x),
it follows that λ1 ≥ λ2.

– Immediate consequence: −α− γ ≤ 2(β − 1).

– Resulting exponent inequality: α + 2β + γ ≥ 2.

The scaling hypothesis assumes that thermodynamic quantities near critical-
ity can be accurately represented by generalized homogeneous functions.

The scaling hypothesis upgrades the exponent inequalities to exponent equal-
ities named scaling laws.

2See section on marginal dimensionality below.
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Test of scaling laws:

The Ginzburg-Landau theory with Ornstein Zernike extension discussed ear-
lier predict the following set of critical-point exponents:

α = 0, β =
1

2
, γ = 1, δ = 3, η = 0, ν =

1

2
,

where the exponent α = 0 is associated with a discontinuity.

The first four of this set of classical exponents are also realized in the mean-
field model for the ferromagnet discussed previously and in the van der Waals
gas as worked out in [tex175].

The classical exponents satisfy the first four scaling laws. The last scaling
law is satisfied for the (marginal) dimensionality D = 4 only.

One prominent exactly solvable statistical mechanical model that undergoes
a second-order phase transition is the Ising model in D = 2 dimensions. Its
set of critical-point exponents,

α = 0, β =
1

8
, γ =

7

4
, δ = 15, η =

1

4
, ν = 1,

where the exponent α = 0 is associated with a logarithmic singularity, satis-
fies all five scaling laws.

Note of caution: For critical points at T = 0, which do exist, some of the
scaling laws must be modified due to confluent power-law terms associated
with temperature.

Marginal dimensionality:

In studies of critical phenomena, D = 4 has been identified as a marginal
dimensionality for systems with short-range interactions. It delimits regimes
of qualitatively different impact of thermal fluctuations.

Estimate of the contribution ∆A from fluctuations to the Helmholtz free
energy near criticality:

– equipartition estimates fluctuation energy: ∆ε ∼ kBT .

– correlation length estimates volume of fluctuation: ∆V ∼ ξD.

– correlation length diverges at criticality: ξ ∼ |τ |−ν .
– Prediction for free-energy fluctuations: ∆A ∼ |τ |Dν .
– Heat capacity near criticality: CV ∼ |τ |−α.
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– Heat capacity (response function) is second derivative of free energy.

– Prediction for free energy: A ∼ |τ |2−α.

– Condition for mean-field validity near criticality: ∆A� A,

– Implied exponent inequality: Dν > 2− α.

– Marginal dimensionality: Dmarg =
2− α
ν

.

– Value for short-range interactions: αTM = 0, νTM = 1
2
⇒ Dmarg = 4.

Longer-range interactions tend to suppress thermal fluctuations, which may
lower the value of the marginal dimensionality. Example: Dmarg = 3 for
spontaneous magnetic ordering caused by magnetic dipole interaction.

The theory of phase transitions distinguishes between upper and lower marginal
dimensionalities. Only the former has been discussed here.

At the lower marginal dimensionality, fluctuations have become too strong
to facilitate spontaneous ordering at any nonzero temperature.
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