
Kinetic Theory I [tsc7]

Physical kinetics covers a lot of ground. It is well developed and wide rang-
ing. Here we explore some of its aspects as a bridge between equilibrium
thermodynamics and equilibrium statistical mechanics.

Statistical concept of uncertainty:

Rolling dice has uncertain outcomes. Loaded dice reduce uncertainty.

The probabilities P1, P2, . . . , P6 to show a 1, 2, . . . , 6, respectively, have been
determined empirically for dice I, II, ..., VI:
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Intuitive assessment of the outcome uncertainty:

– The uncertainty is highest for die I and lowest for die IV.

– Dice II and VI have outcomes of equal uncertainty, higher than that of
die I and lower than that of die I.

– The outcome of die III is less uncertain than that of dice II and III,
but higher than that of die IV.

– The uncertainty for die V is harder to assess. It can be estimated to
be closest to that for die III.

For an experiment that has n possible outcomes with probabilities P1, . . . , Pn,
any quantitative measure of uncertainty must satisfy the following criteria:

1. The uncertainty is a function Σ = Σ(P1, P2, . . . , Pn).

2. The uncertainty is symmetric under permutations of the Pi.

3. The uncertainty is highest if all Pi are equal.

4. The uncertainty is zero if one outcome has probability Pi = 1.

5. The combined uncertainty for two independent experiments is the sum
of their uncertainties: Pij = P a

i P
b
j ⇒ Σ({Pij}) = Σa({P a

i })+Σb({P b
j }).
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The following function is shown in [tex47] to satisfy all five criteria;

Σ(P1, P2, . . . , Pn) = −
n∑
i=1

Pi lnPi = −〈lnP 〉. (1)

If the outcomes of an experiment are characterized by a (normalized) prob-
ability distribution p(x) ≥ 0, then the uncertainty is generalized into the
functional,

Σ[p(x)] = −
∫
dx p(x) ln

(
p(x)

)
= −〈ln p〉.

Statistical concept of information:

Information in the restricted sense employed here is carried by messages.
Likely messages contain less information than unlikely messages.

The information content I(M) of a message M is tied to the probability
P (M) that the message is being received.

Applicable criteria:

– If P (A) < P (B) then I(A) > I(B).

– If P (A) = 1 then I(A) = 0.

– If P (A ∩B) = P (A)P (B) then I(A ∩B) = I(A) + I(B).

The last criterion is about the information content of independent messages.

The information content (in the statistical sense) of a message is equal to the
change in statistical uncertainty at the receiver:

P1, P2, . . . , Pn
A−→ P̄1, P̄2, . . . , P̄n

⇒ I(A) = Σ(P1, P2, . . . , Pn)− Σ(P̄1, P̄2, . . . , P̄n).

Applications:

B Statistical uncertainty: verification of criteria [tex47]

B Information regarding a census of birds [tex48]

B Information of sequenced messages [tex61]
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Statistical uncertainty and entropy:

Looking ahead to statistical mechanics, we employ density operators,

ρ =
∑
n

Pn|n〉〈n|,
∑
n

Pn = 1, (2)

as a bridge between the descriptions of microstates and macrostates.

Determining the microstate of a macroscopic system is almost always im-
possible in practice. It encodes the maximum information (in the statistical
sense) we could have about it – the least uncertainty about it.

Thermodynamic information about a macroscopic system, which is readily
attainable, can be extracted from the Pn of the density operator (2).

The function (1) with the Pn from (2) is a measure for the uncertainty about
the microstate of the system.

Different ways of preparing a macroscopic system amount to different density
operators (2) and, therefore, different uncertainties (1) about the microstate.

A macroscopic system settles down (at equilibrium) in a state of maximum
entropy. While it approaches equilibrium, the entropy increases as does our
uncertainty about the microstate.

It makes sense to (epistemologically) associate entropy with uncertainty about
the microstate of a macroscopic system:

S = −kB〈lnP 〉 = −kB
∑
n

Pn lnPn.

From this perspective, thermodynamic equilibrium is the macrostate that
makes it hardest to predict the actual microstate.

Situations that make it difficult to find things are called disorderly. It is for
this reason that entropy is associated with disorder in a macroscopic system.

Thermodynamic equilibrium is thus commonly identified as the state of max-
imum disorder under specific constraints.
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Kinetics of classical ideal gas:

Our goal here is to gain a better understanding of thermodynamic equilibrium
from the perspective of probability distributions for the state of individual
particles that are constituents of a macroscopic system.

We use the classical ideal gas for this demonstration.

– The gas consists of N of point-like particles in a box of volume V .

– The motion of each particle is rectilinear with constant speed v.

– Interactions are limited to collisions with walls or between particles.

– The velocities and positions are randomized by collisions.

– Thermal equilibrium is characterized by a uniform position distribution
ρ(r) = const and by a nonuniform velocity distribution f(v).

Properties of the velocity distribution f(v):

B
∫
d3vf(v) = 1 (normalization),

B
∫
d3vf(v)v = 0 (symmetry),

B
∫
d3vf(v)

(
1

2
mv2

)
=

1

2
m〈v2〉 =

U

N
=

3

2
kBT (internal energy),

B p =
1

3

N

V
m〈v2〉 =

1

3

N

V
3kBT ⇒ pV = NkBT (equation of state),1

B S = −NkB
∫
d3v f(v) ln

(
f(v)

)
(entropy).

A variety of derivations of ρ(r) and f(v) will be discussed below.

Graphical representations of ρ(r) and f(v) in two dimensions.

1The derivation of pressure from f(v) is worked out in [tex49].
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Maxwell velocity distribution:

Criteria used by Maxwell in his derivation [tex50]:

– statistical independence: f(vx, vy, vz) = f1(vx)f1(vy)f1(vz).

– spherical symmetry:

f1(vx)f1(vy)f1(vz) = f1

(√
v2x + v2y + v2z

)
f1(0)f1(0).

– equipartition:
1

2
m〈v2α〉 =

1

2
kBT, α = x, y, z.
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Maxwell velocity distribution:

⇒ f(vx, vy, vz) =

(
m

2πkBT

)3/2

exp

(
−
m(v2x + v2y + v2z)

2kBT

)
.

Speed distribution:

Integrate f(vx, vy, vz) over shell v <
√
v2x + v2y + v2z < v + dv.

⇒ fs(v) = 4π

(
m

2πkBT

)3/2

v2 e−mv
2/2kBT .

Energy distribution:

Use E =
1

2
mv2, v2dv =

1

2

(
2

m

)3/2

E1/2dE.

⇒ fE(E) =
2√
π

(kBT )−3/2
√
E e−E/kBT .
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Root-mean-square speed:

〈v2〉 =

∫ ∞
0

dv v2fs(v) ⇒
√
〈v2〉 =

√
3kBT

m
.

Mean speed:

〈v〉 =

∫ ∞
0

dv vfs(v) ⇒ 〈v〉 =

√
8kBT

πm
.

Most frequent speed:

dfs
dv

∣∣∣∣
v0

= 0 ⇒ v0 =

√
2kBT

m
⇒ fs(v0) =

√
8m

πkBT
e−1.

Applications:

B Maxwell velocity distribution in D dimensions [tex56]

B Energy distribution of N ideal gas atoms [tex57]

B Boltzmann’s derivation of Maxwell velocity distribution [tex58]

Boltzmann equation:

Consider a dilute gas in a box with a uniform distribution of positions,
ρ(r) = const, and a nonequilibrium distribution f(v, t) of velocities. How
does the latter approach equilibrium?

Boltzmann proposes a kinetic equation, which takes into account elastic pair
collisions, characterized by a scattering cross section σ(v1,v2;v

′
1,v

′
2), where

the first (last) two variables are the velocities before (after) the collision.
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During the (infinitesimal) time interval dt, the number of particles with ve-
locities v1d

3v1 changes due to contributions A and B from two kinds of
processes:

[f(v1, t+ dt)− f(v1, t)] d
3v1 = B − A
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The number of collisions away from v1d
3v1 is

A = dtd3v1

∫
d3v2

∫
d3v′1

∫
d3v′2 σ(v1,v2;v

′
1,v

′
2)f(v1, t)f(v2, t).

The number of collisions into v1d
3v1 is

B = dtd3v1

∫
d3v2

∫
d3v′1

∫
d3v′2 σ(v′1,v

′
2;v1,v2)f(v′1, t)f(v′2, t).

In both terms, the first assumption is implied, whereas the second assumption
is used in the construction of the Boltzmann equation:

– Assumption of molecular chaos, which neglects correlations produced
by the collisions. The pair distribution thus factorizes:

f (2)(v1,v2, t) = f(v1, t)f(v2, t).

– Symmetry assumptions of scattering cross section:

σ(v1,v2;v
′
1,v

′
2) = σ(v2,v1;v

′
2,v

′
1) = σ(v′1,v

′
2;v1,v2).

Boltzmann’s kinetic equation:

⇒ ∂

∂t
f(v1, t) = −

∫
d3v2

∫
d3v′1

∫
d3v′2 σ(v1,v2;v

′
1,v

′
2)

×
[
f(v1, t)f(v2, t)− f(v′1, t)f(v′2, t)

]
.

This rendition of the Boltzmann equation applies only to the special case of
spatially uniform velocity distributions. The most general rendition has a
rich field of applications (topic for a different course).

H-function:

Boltzmann’s H-function,

H(t)
.
=

∫
d3v f(v, t) ln f(v, t),

is related to the uncertainty in our knowledge of the particle velocities as
contained in the distribution f(v, t): H(t) = −Σ[f(v, t)]. The opposite sign
is of no importance – an accidental choice.

Boltzmann’s point was to show that if f(v, t) is a solution of the above
kinetic equation, then H(t) decreases monotonically in time and approaches
a stationary value H(∞).
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H-theorem:

We single out (as in the kinetic equation) a particle that has velocity v1

with probability f(v1, t) at time t between collisions. The instantaneous
H-function is

H(t)
.
=

∫
d3v1 f(v1, t) ln f(v1, t).

and its derivative becomes

dH

dt
=

∫
d3v1

[
∂f(v1, t)

∂t
ln f(v1, t) +

∂f(v1, t)

∂t

]
.

The second term vanishes upon integration:∫
d3v1

∂f(v1, t)

∂t
=

d

dt

∫
d3v1 f(v1, t) = 0.

For the derivative in the first term, we substitute the kinetic equation:

⇒ dH

dt
=−

∫
d3v1

∫
d3v2

∫
d3v′1

∫
d3v′2 σ(v1,v2;v

′
1,v

′
2)

× ln f(v1, t)
[
f(v1, t)f(v2, t)− f(v′1, t)f(v′2, t)

]
.

Notice that all four velocities are integrated over. Next we use the symmetry
properties of σ noted above and rewrite this expression with three velocity
permutations implemented as follows:

dH/dt = · · · {v1 ↔ v2}, {v′1 ↔ v′2},
dH/dt = · · · {v1 ↔ v′1}, {v2 ↔ v′2},
dH/dt = · · · {v1 ↔ v′2}, {v2 ↔ v′1}.

The addition of the four versions of dH/dt yields the following expression:

⇒ 4
dH

dt
= −

∫
d3v1

∫
d3v2

∫
d3v′1

∫
d3v′2 σ(v1,v2;v

′
1,v

′
2)

×
[
f(v1, t)f(v2, t)− f(v′1, t)f(v′2, t)

]
×
[
ln
(
f(v1, t)f(v2, t)

)
− ln

(
f(v′1, t)f(v′2, t)

)]
.

The function h(x, y) ≡ (x− y)(lnx− ln y) is non-negative for x, y > 0 and is
equal to zero if x = y. The scattering cross section σ is non-negative.
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Consequence:

– General situations:
dH

dt
≤ 0,

– Stationary situations:
dH

dt
= 0 if f(v1, t)f(v2, t) = f(v′1, t)f(v′2, t).

The (stationary) velocity distribution which makesH stationary is the Maxwell
distribution (Boltzmann’s derivation [tex58]).

The stationary H-function is related to the entropy of an ideal gas at equi-
librium [tex59]:

S = −NkBH(∞).

Here the uncertainty in our knowledge of particle velocities is a maximum.

H-theorem and irreversibility:

Q: How does the preferred time direction, selected by the monotonic time-
dependence of H(t), follow from the underlying microscopic dynamics, which
is invariant under time reversal?

A: The solution f(v, t) of the Boltzmann equation is to be interpreted as rep-
resenting the properties of an ensemble of systems, i.e. the average behavior
of systems that are prepared equally (on a macroscopic level).

Consider the function,

H̃(t) =

∫
d3v f̃(v, t) ln f̃(v, t),

calculated via computer simulation, where f̃(~v, t) now represents the velocity
distribution of a single system.

Simulation data (shown below) show that H̃(t) tends to decrease and ap-
proach an asymptotic value just as the function H(t) does.

Effect of a velocity inversion (in simulation) at time tI : H̃(t) increases at
t > tI for some time. Then H̃(t) decreases again and approaches the same
asymptotic value as H(t) does.

We can interpret −H̃(t) before the velocity inversion as our (growing) un-
certainty about the particle velocities in the system.

The information contained in f̃(v, t) over and above the three general prop-
erties from which the Maxwell distribution was derived is H̃(t)−H̃(∞). This
information is insufficient to carry out the velocity inversion.
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Performing the velocity inversion requires an influx of information beyond
what is contained in f̃(v, t), which causes a discontinuous drop in uncertainty
of our knowledge about the particle velocities.

At t = tI , where the velocity inversion occurs, the function H(t) jumps to
a higher value and then decreases gradually as the information injected gets
lost gradually due to collisions.

t

H H~~

t
I

=H

H

Data from computer simulation of 100 hard disks moving in a 2D box and
undergoing elastic collisions. Initial state: disks positioned on a regular
lattice with random velocities. Open circles: H̃(t). Full circles: H̃(t) when
velocities are inverted after 50 or 100 collisions. [image from Prigogine 1980]

Boltzmann’sH-theorem does not resolve the paradox between time-reversible
dynamics and manifestations of irreversibility, it merely illuminates it.

There is growing consensus that the arrow of time is intimately related to
the expansion of the universe.
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