
Thermodynamics of Phase Transitions II [tsc6]

We begin this module with a closer look at the liquid-gas transition of a fluid
by briefly focusing on three aspects:

– The law of corresponding states near the critical point, as manifest in
model equations of state, which looks ahead to the general feature of
universality in critical behavior.

– The Maxwell construction of coexisting macrostates along the vapor-
pressure curve, based on free-energy minimization and mechanical sta-
bility criteria.

– The nucleation of droplets which initiate condensation or bubbles which
initiate evaporation – processes whose rates greatly differ in the regimes
of metastability and instability.

Law of corresponding states:

Use the critical-point values, pc, Vc, Tc, ρc, for the thermodynamic variables
and introduce rescaled quantities:
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Empirical fact: Near the critical point, the relations between (rescaled) ther-
modynamic quantities exhibit features of universality as evident in experi-
mental data (see e.g. Guggenheim plot in [tsc5]).

In the van der Waals equation of state,(
p+

an2

V 2

)
(V − nb) = nRT,

the critical point is identified by the two
criteria of zero slope and zero curvature,(

∂p

∂V

)
T

=

(
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)
T

= 0.

The critical-point values are:

pc =
a

27b2
, Vc = 3nb, Tc =

8a

27bR
.
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The two parameters a, b of van der Waals equation of state assume different
values in applications to different fluids. The third parameter n is a measure
for the amount of fluid.

In rescaled units, the van der Waals equation of state is parameter-free:(
p̄+

3

V̄ 2

)
(3V̄ − 1) = 8T̄ .

Each point on that universal curve corresponds to different values of p, V, T
in different fluids, all close to the critical point.

Maxwell construction:

We study the (discontinuous) liquid-gas transition for a fluid system de-
scribed by the van der Waals equation of state.

We begin by investigating how the Gibbs free energy varies as the fluid under-
goes a quasi-static process (with road marks A,B, . . . , I) along an isotherm
at the subcritical temperature T < Tc:

dG = −SdT + V dp = V dp ⇒ G(T, p) = G(T, pA) +

∫ p

pA

dp V (p).
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The path in the (p, V )-plane is sketched on the left and the integral is sketched
on the right.

The integral is the area under curve, counted positively (negatively) when
the path moves to the right (left).

The vertical line CEG is positioned such that the two shades areas are equal.
The consequence is that the points C and G coincide on the right.
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The Gibbs free energy G(T, p) as a function of p has two concave segments
A−D, F − I, and one convex segment D − F .

– Concavity implies

(
∂V

∂p

)
T

< 0, which indicates mechanical stability.

– Convexity implies

(
∂V

∂p

)
T

> 0, which indicates mechanical instability.

The Gibbs free energy G(T, p) as a function of p is multiple-valued between
road marks B and H.

– The lowest branch is thermodynamically stable.

– Higher branches are either thermodynamically unstable if they are me-
chanically unstable or thermodynamically metastable if they are me-
chanically stable.

Consequence for the isotherm under scrutiny:

– Segments ABC and GHI are thermodynamically stable.

– Segments CD and FG are thermodynamically metastable.

– Segment DEF is thermodynamically unstable.

The isotherm of a quasi-static process includes only stable states. It is de-
scribed by the curve ABCGHI in the (p, V )-plane.

The straight (vertical) segment describes a two-phase macrostate. During
that segment, the Gibbs free energy does not change.

As noted above, mechanical stability requires that the Gibbs potentialG(T, p)
is a concave function p:

V =

(
∂G

∂p

)
T

,

(
∂V

∂p

)
T

=

(
∂2G

∂p2

)
T

< 0.

The same criterion requires that the Helmholtz potential A(T, V ) is a convex
function of V :

−p =

(
∂A

∂V

)
T

, −
(
∂p

∂V

)
T

=

(
∂2A

∂V 2

)
T

> 0.
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It is instructive to also investigate how the Helmholtzs free energy varies
as the fluid undergoes a quasi-static process (with road marks A,B, . . . , I)
along the same isotherm at the subcritical temperature T < Tc:

dA = −SdT − pdV = −pdV ⇒ A(T, V ) = A(T, VA)−
∫ V

VA

dv p(V ).
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The path in the (V, p)-plane is sketched on the left and the integral is sketched
on the right. In this case the function to be integrated is single-valued.

Fewer roadmarks are shown. The segments G − F and D − C of A(T, V )
versus V are convex (mechanically stable), whereas the segment FED is
concave (mechanically unstable).

Mechanical stability does not guarantee thermodynamic stability. Between
roadmarks G and C, A(T, V ) can be made smaller if we replace the homo-
geneous system by a system with two coexisting phases.

The straight line segment represents the coexistence with shifting volume
fractions of the two phases with pressure fixed at roadmarks G and C.

This implies that the mechanically stable segments GF and DC are thermo-
dynamically metastable.

The shaded region in the graph on the left outlines the extent of the region
of metastability, not just for this particular isotherm, but for all subcritical
isotherms. It is bounded by the coexistence curve (solid line) and the spinodal
curve (dashed line).
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Nucleation of droplets or bubbles:

Supersaturated gases and superheated liquids owe their metastable existence
to the surface tension σ, impeding the growth of droplets or bubbles.

Consider a liquid droplet of radius R in equilibrium with the surrounding
vapor in a box of volume Vtot at constant temperature T :

– Thermal equilibrium: Tl = Tg = T .

– Chemical equilibrium: µl = µg.

– Mechanical equilibrium: pl > pg due to surface tension.

Find the gas pressure pg(R) at equilibrium with a liquid droplet of radius R.

Work done on droplet of volume Vl = (4π/3)R3 and surface area A = 4πR2:

dW = −pldVl − pgdVg + σdA = −(pl − pg)dVl + σdA.

Condition of mechanical equilibrium: dW = 0

⇒ (pl − pg)(4πR2dR) = σ(8πRdR).

Excess pressure in droplet: pl − pg =
2σ

R
. (1)

Gibbs-Duhem equations (with dT = 0), Nldµl = Vldpl, Ngdµg = Vgdpg.

Condition of chemical equilibrium: dµl = dµg

⇒ Vl
Nl

dpl =
Vg
Ng

dpg ⇒ d(pl − pg) =
Vg/Ng − Vl/Nl

Vl/Nl

dpg.

Use ideal gas attributes:
Vg
Ng

� Nl

Vl
,

Vg
Ng

' kBT

pg
.

Excess pressure in droplet: d(pl − pg) =
kBT/pg
Vl/Nl

dpg. (2)

Assemble (1) and (2), then integrate:∫ pg(R)

pg(∞)

dpg
pg

=
Vl

NlkBT

∫ R

∞
d

(
2σ

R

)
⇒ ln

pg(R)

pg(∞)
=

2σVl
RNlkBT

=
2σm

RρlkBT
.

⇒ pg(R) = pg(∞) exp

(
2σm

RρlkBT

)
.
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In a supersaturated gas, the ambient pressure is pamb. It is at equilibrium
with droplets of threshold radius Rc:

pamb = pg(Rc) > pg(∞).

Droplets of various sizes are spontaneously nucleated by thermal fluctuations.
The probability of spontaneous nucleation decreases with size.

Droplets with R < Rc will shrink and disappear. Droplets with R > Rc will
grow and initiate condensation.

Metastability depends on the absence of droplets with radius R > Rc. The
boundary of the metastable region (spinodal line) corresponds to a value of
Rc comparable to the molecular radius. Supersaturation cannot be pushed
beyond that point.
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For a vapor bubble surrounded by superheated liquid, the argument proceeds
along analogous lines. Bubbles are nucleated spontaneously, small bubbles
at a higher rate than larger bubbles.

Bubbles above a certain threshold size must be present for evaporation to be
initiated. The threshold size shrinks with increased superheating.
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